Though selenium (Se) and zinc (Zn) constitute essential nutrients for human health, their deficiencies affect up to 15% and 17% of the global population, respectively. Agronomic biofortification of staple crops with Se/Zn may alleviate these challenges. Pea ( L.) is a nutritious legume crop that has great potential for Se/Zn biofortification. Herein, two varieties of pea (Ambassador, Premium) were biofortified via foliar application of sodium selenate (0/50/100 g of Se/ha) or zinc oxide (0/375/750 g of Zn/ha) during the flowering stage under field conditions. While no significant differences were found in Se accumulation between seed varieties upon Se treatments, selenate enhanced the accumulation of Se in the two seed varieties in a dose dependent manner. Selenium concentration was most elevated in seeds of Ambassador exposed to 100 g of Se/ha (3.93 mg/kg DW compared to the control (0.08 mg/kg DW), < 0.001). 375 g of Zn/ha (35.7 mg/kg DW) and 750 g of Zn/ha (35.5 mg/kg DW) significantly and similarly enhanced Zn concentrations compared to the control (31.3 mg/kg DW) in Premium seeds, < 0.001. Zinc oxide also improved accumulations of Fe, Cu, Mn, and Mg in Premium seeds. Se/Zn treatments did not significantly affect growth parameters and accumulations of soluble solids and protein in seeds. Positive and significant ( < 0.01) correlations were observed between Zn and Fe, Cu, Mn and Mg levels in Premium seeds, among others. Consuming 33 g/day of pea biofortified with Se at 50 g/ha and 266 g/day of pea biofortified with 375 g of Zn/ha could provide 100% of the RDA (55 μg) for Se and RDA (9.5 mg) for Zn in adults, respectively. These results are relevant for enhancing Se/Zn status in peas by foliar biofortification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048356 | PMC |
http://dx.doi.org/10.3390/foods12061286 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!