A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Automated Image Processing Module for Quality Evaluation of Milled Rice. | LitMetric

AI Article Synopsis

  • The paper outlines a cost-effective system using image processing and machine learning to assess rice quality.
  • A Raspberry-Pi module was created to capture images of 3081 rice grains from eight varieties, focusing on key features like shape and size for classification.
  • The random forest classifier achieved the highest accuracy of 77% for identifying rice types and can also evaluate the pricing of adulterated rice samples based on market values.

Article Abstract

The paper demonstrates a low-cost rice quality assessment system based on image processing and machine learning (ML) algorithms. A Raspberry-Pi based image acquisition module was developed to extract the structural and geometric features from 3081 images of eight different varieties of rice grains. Based on features such as perimeter, area, solidity, roundness, compactness, and shape factor, an automatic identification system is developed to segment the grains based on their types and classify them by using seven machine learning algorithms. These ML models are trained using the images and are compared using different ML models. ROC curves are plotted for each model for quantitative analysis to assess the model's performance. It is concluded that the random forest classifier presents an accuracy of 77 percent and is the best-performing model for the classification of rice varieties. Furthermore, the same algorithm is efficiently employed to determine the price of adulterated rice samples based upon the market price of individual rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048426PMC
http://dx.doi.org/10.3390/foods12061273DOI Listing

Publication Analysis

Top Keywords

image processing
8
based image
8
machine learning
8
learning algorithms
8
grains based
8
rice
6
based
5
automated image
4
processing module
4
module quality
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!