Foodborne diseases caused by foodborne pathogens pose risks to food safety. Effective detection and efficient inactivation of pathogenic bacteria has always been a research hotspot in the field of food safety. Complicating these goals, bacteria can be induced to adopt a viable but non-culturable (VBNC) state under adverse external environmental stresses. When in the VBNC state, pathogens cannot form visible colonies during traditional culture but remain metabolically active and toxic. The resulting false negative results in growth-related assays can jeopardize food safety. This review summarizes the latest research on VBNC foodborne pathogens, including induction conditions, detection methods, mechanism of VBNC formation, and possible control strategies. It is hoped that this review can provide ideas and methods for future research on VBNC foodborne pathogenic bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048424PMC
http://dx.doi.org/10.3390/foods12061179DOI Listing

Publication Analysis

Top Keywords

pathogenic bacteria
12
food safety
12
viable non-culturable
8
foodborne pathogenic
8
foodborne pathogens
8
vbnc state
8
vbnc foodborne
8
foodborne
5
vbnc
5
current perspectives
4

Similar Publications

Aerosol particles released from grit chambers of nine urban wastewater treatment plants in typical regions: Fugitive characteristics, quantitative drivers, and generation process.

Water Res

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.

View Article and Find Full Text PDF

Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).

View Article and Find Full Text PDF

Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!