In this study the recycling of pomegranate peel powder (PPP) was proposed. In particular, the use of powder loaded in a silk fibroin polymeric matrix to create an active pad was tested. For the sake of comparison, the powder alone was also analysed. Both powder and active pad efficacy was assessed in two different food systems, soymilk (rich in proteins), preliminarily contaminated with spp. and yeasts, and apple juice (rich in carbohydrates), preliminarily contaminated with . Three different concentrations of powder alone and powder in the pad were tested (5%, 7.5% and 10% /) in both types of beverages. To assess a possible dependence of the efficacy on the powder granulometry, different powder sizes were preliminarily analysed on spp. and yeasts using an in vitro test. PPP was effective on both spp. and yeasts. No significant differences appeared among the tested granulometries and therefore in the subsequent tests powder with an average diameter of 250 µm was used. Results recorded with soymilk and apple juice were different. When applied to the soymilk, the activity of PPP in the pad was less effective than that recorded when the powder was directly added to the beverage. With the two highest powder concentrations directly added to food, more than four log cycle reductions in spp. and yeast cells were recorded, compared to soymilk without any powder. Compared to the control sample, all the soymilk samples either with PPP or with the active pad showed a delayed microbial and fungal growth. When applied to apple juice, both powder and pad were effective at completely inhibiting the proliferation of (<10 CFU/g).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048077 | PMC |
http://dx.doi.org/10.3390/foods12061173 | DOI Listing |
Environ Geochem Health
January 2025
Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA.
Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
During the preparation of single-domain (S-D) REBaCuO (RE-123) superconducting bulks, the seed crystals can serve as templates for crystal growth, guiding the newly formed crystals to grow in a specific direction, thereby ensuring the consistency of the crystal orientation within the sample. However, the infiltration temperature is typically restricted to approximately 1050 °C when employing NdBaCuO (Nd-123) crystal seeds in the traditional top-seeded infiltration growth (TSIG) technique for producing single-domain Y-123 bulk superconductors. In the present study, to overcome the temperature limitations of the heat treatment process, the optimized YO +011 IG (011 refers to BaCuO powder) method was employed to fabricate a group of single-domain Y-123 bulks with a high-temperature infiltration (1000-1300 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!