Exposure to Juvenile Stress Induces Epigenetic Alterations in the GABAergic System in Rats.

Genes (Basel)

Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa 3498838, Israel.

Published: February 2023

AI Article Synopsis

  • Epigenetics involves how genes are influenced by the environment, mainly through changes in gene expression regulation, with stress known to cause such changes.
  • This study explored the effects of juvenile and adult stress on glutamic acid decarboxylase genes in rats, analyzing DNA methylation and RNA expression in different brain regions.
  • Results showed juvenile stress led to lower methylation in the amygdala but higher methylation in another brain region, with RNA levels decreasing in the juvenile stress group—indicating that stress may have both beneficial and harmful effects depending on the timing and context.

Article Abstract

Epigenetics is a gene-environment interaction mechanism, manifested mostly through changes in regulatory gene expression. Stress is an established environmental factor known to induce epigenetic changes. This study aimed to assess the long-term effect of stress as juveniles, or juvenile and adult stress, on alterations in glutamic acid decarboxylase genes (, ). We assessed DNA methylation and RNA expression in four rat groups: (1) control group, (2) juvenile stress group sacrificed two days following stress exposure (JSe) (RNA only), (3) juvenile stress group sacrificed as adults (JS), and (4) juvenile and adult stress group (JS + AS). Three different areas of the brain were examined in each group: the dorsal dentate gyrus (dDG), the dorsal CA1 (dCA1), and the basolateral amygdala (BLA). A significantly low methylation level of in the BLA was observed among the JS group, followed by almost complete recovery among the JS + AS group. However, in dDG, an opposite trend was captured, and higher methylation was found in JS. In addition, RNA levels were found to be decreased in JS compared to JSe and JS + AS. These findings can point to a possible mechanism: while juvenile stress may enhance a better coping strategy with life challenges, additional stress in adulthood may trigger a contradictory response, either beneficial or harmful.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048220PMC
http://dx.doi.org/10.3390/genes14030565DOI Listing

Publication Analysis

Top Keywords

juvenile stress
16
stress group
12
stress
10
juvenile adult
8
adult stress
8
group sacrificed
8
group
7
juvenile
5
exposure juvenile
4
stress induces
4

Similar Publications

Integrating social learning, social networks, and non-parental transgenerational plasticity.

Trends Ecol Evol

January 2025

Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA.

Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles.

View Article and Find Full Text PDF

Neurodevelopmental toxicity and mechanism of action of monoethylhexyl phthalate (MEHP) in the developing zebrafish (Danio rerio).

Aquat Toxicol

December 2024

School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:

Monoethylhexyl phthalate (MEHP) is the primary metabolite of di(2-ethylhexyl) phthalate (DEHP), the most prevalent phthalate plasticiser globally. It has been demonstrated that MEHP exerts more potent toxic effects than DEHP. Nevertheless, the full extent of the toxicity of MEHP to neurodevelopmental organisms remains unclear.

View Article and Find Full Text PDF

Nurse sharks (Ginglymostoma cirratum), especially juveniles, are often encountered by near-shore and shore-based recreational anglers and are suggested to exhibit minimal behavioral and physiological responses to capture, largely based on studies of adults using commercial or scientific fishing methods. To quantify the sub-lethal effects of recreational angling on juvenile nurse sharks, 27 individuals (across 31 angling events) were caught using hook-and-line fishing methods. Over a 30-min period, 4 blood samples were taken with variable time intervals between sampling (i.

View Article and Find Full Text PDF

Corrigendum to "Transcriptomics reveals crowding stress inhibit the immune defense of the head kidney of the pearl gentian grouper juvenile through NF-κB signal pathway" (162), January 2025, 105299.

Dev Comp Immunol

December 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, PR China; Mingbo Aquatic Products Co., Ltd, Yantai, 261400, PR China. Electronic address:

View Article and Find Full Text PDF

Effects of Ammonia Stress on Liver Tissue Structure, Enzyme Activities, and Metabolome of Juvenile Largemouth Bass .

Metabolites

November 2024

Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China.

Ammonia, a ubiquitous contaminant in aquatic ecosystems, poses multifaceted threats to fish species at elevated concentrations. In order to investigate the toxic effects of chronic ammonia stress on the liver of juvenile , the present experiment was conducted to investigate the differences in changes in liver tissue structure, enzyme activities, and metabolomes after 28 days of ammonia exposure (0, 4, 8, and 16 mg/L). The findings revealed that ammonia exposure induced significant oxidative stress in the liver, manifesting in decreased activities of antioxidant enzymes SOD and GSH-Px, elevated levels of GSH, GST, and MDA, and heightened activities of immune enzymes LZM, ALP, and ACP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!