Circulating tumor cells (CTCs), a population of cancer cells that represent the seeds of metastatic nodules, are a promising model system for studying metastasis. However, the expansion of patient-derived CTCs ex vivo is challenging and dependent on the collection of high numbers of CTCs, which are ultra-rare. Here we report the development of a combined CTC and cultured CTC-derived xenograft (CDX) platform for expanding and studying patient-derived CTCs from metastatic colon, lung, and pancreatic cancers. The propagated CTCs yielded a highly aggressive population of cells that could be used to routinely and robustly establish primary tumors and metastatic lesions in CDXs. Differential gene analysis of the resultant CTC models emphasized a role for NF-κB, EMT, and TGFβ signaling as pan-cancer signaling pathways involved in metastasis. Furthermore, metastatic CTCs were identified through a prospective five-gene signature (, , , , and ). Whole-exome sequencing of CDX models and metastases further identified mutations in constitutive photomorphogenesis protein 1 () as a potential driver of metastasis. These findings illustrate the utility of the combined patient-derived CTC model and provide a glimpse of the promise of CTCs in identifying drivers of cancer metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046547 | PMC |
http://dx.doi.org/10.3390/cancers15061831 | DOI Listing |
Background: The use of liquid biopsy of total cell-free DNA (cfDNA) to identify otherwise undetectable cancers has attracted interest; however, its efficacy remains unknown. We explored whether analysis using total cfDNA is efficacious for Japanese patients with oral squamous cell carcinoma (OSCC).
Methods: We collected total cfDNA from nine patients with OSCC preoperatively, 1 month postoperatively, and every 3 months thereafter to analyze this association.
Clin Transl Med
January 2025
Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
Precision medicine in less-defined subtype diffuse large B-cell lymphoma (DLBCL) remains a challenge due to the heterogeneous nature of the disease. Programmed cell death (PCD) pathways are crucial in the advancement of lymphoma and serve as significant prognostic markers for individuals afflicted with lymphoid cancers. To identify robust prognostic biomarkers that can guide personalized management for less-defined subtype DLBCL patients, we integrated multi-omics data derived from 339 standard R-CHOP-treated patients diagnosed with less-defined subtype DLBCL from three independent cohorts.
View Article and Find Full Text PDFSci Rep
December 2024
Translational Oncogenomics and Bioinformatics Lab, Center for Medical Biotechnology, VIB-UGent & CRIG, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
Esophageal adenocarcinoma (EAC) is an aggressive cancer characterized by a high risk of relapse post-surgery. Current follow-up methods (serum carcinoembryonic antigen detection and PET-CT) lack sensitivity and reliability, necessitating a novel approach. Analyzing cell-free DNA (cfDNA) from blood plasma emerges as a promising avenue.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan.
DNA methylation is known to be involved in tumor progression. This is the first study to perform an extensive methylation analysis of plasma circulating tumor DNA (ctDNA) using targeted bisulfite sequencing in gastric cancer (GC) patients to evaluate the usefulness of ctDNA methylation as a new biomarker. Sixteen patients who received chemotherapy for recurrent GC were included.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!