Purpose: Radiation-induced senescence is characterized by profound changes in chromatin organization with the formation of (SAHF) and (DNA-SCARS). Importantly, senescent cells also secrete complex combinations of pro-inflammatory factors, referred as (SASP). Here, we analyzed the epigenetic mechanism of histone variant H2A.J in establishing radiation-induced senescence.

Experimental Design: Primary and genetically-modified lung fibroblasts with down- or up-regulated H2A.J expression were exposed to ionizing radiation and were analyzed for the formation of SAHF and DNA-SCARS by immunofluorescence microscopy. Dynamic changes in chromatin organization and accessibility, transcription factor recruitment, and transcriptome signatures were mapped by ATAC-seq and RNA-seq analysis. The secretion of SASP factors and potential bystander effects were analyzed by ELISA and RT-PCR. Lung tissue of mice exposed to different doses were analyzed by the digital image analysis of H2A.J-immunohistochemistry.

Results: Differential incorporation of H2A.J has profound effects on higher-order chromatin organization and on establishing the epigenetic state of senescence. Integrative analyses of ATAC-seq and RNA-seq datasets indicate that H2A.J-associated changes in chromatin accessibility of regulatory regions decisively modulates transcription factor recruitment and inflammatory gene expression, resulting in an altered SASP secretome. In lung parenchyma, pneumocytes show dose-dependent H2A.J expression in response to radiation-induced DNA damage, therefore contributing to pro-inflammatory tissue reactions.

Conclusions: The fine-tuned incorporation of H2A.J defines the epigenetic landscape for driving the senescence programme in response to radiation-induced DNA damage. Deregulated H2A.J deposition affects chromatin remodeling, transcription factor recruitment, and the pro-inflammatory secretome. Our findings provide new mechanistic insights into DNA-damage triggered epigenetic mechanisms governing the biological processes of radiation-induced injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047397PMC
http://dx.doi.org/10.3390/cells12060916DOI Listing

Publication Analysis

Top Keywords

chromatin organization
16
changes chromatin
12
transcription factor
12
factor recruitment
12
histone variant
8
variant h2aj
8
radiation-induced senescence
8
formation sahf
8
sahf dna-scars
8
h2aj expression
8

Similar Publications

Emergence of fungal hybrids - potential threat to humans.

Microb Pathog

January 2025

Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, INDIA. Electronic address:

Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.

View Article and Find Full Text PDF

Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member.

View Article and Find Full Text PDF

Genome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.

View Article and Find Full Text PDF

Deep learning in integrating spatial transcriptomics with other modalities.

Brief Bioinform

November 2024

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.

Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.

View Article and Find Full Text PDF

Noncoding small RNAs are essential for modulating bacterial gene expression, especially under carbon and nutrient-limited conditions. In this study, by employing both in silico and molecular hybridization tools, we identified a carbon source responsive small RNA in A. baumannii DS002.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!