Ponte osteotomy is an increasingly popular technique for multiplanar correction of adolescent idiopathic scoliosis. Prior cadaveric studies have suggested that sequential posterior spinal releases increase spinal flexibility. Here we introduce a novel technique involving a sequential approach to the Ponte osteotomy that minimizes spinal canal exposure. One fresh-frozen adult human cadaveric thoracic spine specimen with 4 cm of ribs was divided into three sections (T1-T5, T6-T9, T10-L1) and mounted for biomechanical testing. Each segment was loaded with five Newton meters under four conditions: baseline inferior facetectomy with supra/interspinous ligament release, superior articular process (SAP) osteotomy in situ, spinous process (SP) osteotomy in situ, and complete posterior column osteotomy with SP/SAP excision and ligamentum flavum release (PCO). Compared to baseline, in situ SAP osteotomy alone provided 3.5%, 7.6%, and 7.2% increase in flexion/extension, lateral bending, and axial rotation, respectively. In situ SP osteotomy increased flexion/extension, lateral bending, and axial rotation by 15%, 18%, and 10.3%, respectively. PCO increased flexion/extension, lateral bending, and axial rotation by 19.6%, 28.3%, and 12.2%, respectively. Our report introduces a novel approach where incremental increases in range of motion can be achieved with minimal spinal canal exposure and demonstrates feasibility in a cadaveric model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047818PMC
http://dx.doi.org/10.3390/children10030470DOI Listing

Publication Analysis

Top Keywords

ponte osteotomy
12
spinal canal
12
canal exposure
12
flexion/extension lateral
12
lateral bending
12
bending axial
12
axial rotation
12
sequential approach
8
approach ponte
8
osteotomy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!