Design Considerations of an ITO-Coated U-Shaped Fiber Optic LMR Biosensor for the Detection of Antibiotic Ciprofloxacin.

Biosensors (Basel)

Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy.

Published: March 2023

The extensive use of antibiotics has become a serious concern due to certain deficiencies in wastewater facilities, their resistance to removal, and their toxic effects on the natural environment. Therefore, substantial attention has been given to the detection of antibiotics because of their potential detriment to the ecosystem and human health. In the present study, a novel design of indium tin oxide (ITO) coated U-shaped fiber optic lossy mode resonance (LMR) biosensor is presented for the sensitive detection of the antibiotic ciprofloxacin (CIP). The performance of the designed U-shaped LMR sensor is characterized in terms of its sensitivity, full width at half maximum (FWHM), the figure of merit (FOM), and the limit of detection (LOD). For the proposed U-shaped LMR sensing probe, the various crucial factors such as the thickness (d) of the ITO layer, sensing region length (L), and bending radius (R) are optimized. The thickness of the ITO layer is optimized in such a way that two LMR curves are observed in the transmission spectrum and, thereafter, the performance parameters are evaluated for each LMR. It is observed that the designed U-shaped LMR sensor with optimized parameters shows an approximately seven-fold enhancement in sensitivity compared to the straight-core fiber optic LMR sensor. The numerical results revealed that the designed U-shaped fiber optic LMR biosensor can provide a maximum sensitivity of 17,209.9 nm/RIU with the highest FOM of 91.42 RIU, and LOD of 6.3 × 10 RIU for the detection of CIP hydrochloride in the concentration range of 0.001 to 0.029 mol∙dm. Thus, it is believed that the designed LMR biosensor can practically explore its potential use in environmental monitoring and biomedical applications and hence, opens a new window of opportunity for the researchers working in the field of U-shaped fiber optic LMR biosensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046811PMC
http://dx.doi.org/10.3390/bios13030362DOI Listing

Publication Analysis

Top Keywords

fiber optic
20
u-shaped fiber
16
optic lmr
16
lmr biosensor
16
designed u-shaped
12
u-shaped lmr
12
lmr sensor
12
lmr
11
detection antibiotic
8
antibiotic ciprofloxacin
8

Similar Publications

Tuneable, variable, optical attenuation through an optical circulator with a broad, linear attenuation range of Δ ∼ (30-40) dB is demonstrated using non-reciprocal Faraday rotation in a double-pass configuration with a combination of permanent magnets and an electromagnet. A fiber-coupled magneto-optical variable optical attenuator (MVOA) operates over the near IR with an attenuation tuning range of Δ > 30 dB, a resolution of Δ ∼ 0.02 dB, a response time of  < 2 ms, and a temperature dependence over  = 25-70°C of Δ / Δ = -8 × 10 dB/°C.

View Article and Find Full Text PDF

The inertial element of a solid block is commonly used as the proof mass in traditional accelerometers. However, it is challenging to accommodate both the high-density solid-state proof mass and the highly elastic component simultaneously in a miniature sensor, which makes it difficult for the sensors to maintain comparable sensing performance at a miniaturized size. Here, a novel, to the best of our knowledge, liquid metal-based fiber optic accelerometer (LMFOA) is proposed for the first time to meet this requirement.

View Article and Find Full Text PDF

Purpose: To evaluate optic disc and macular microvasculature changes in children with anisometropic amblyopia before and after treatment.

Methods: In all, 60 children with unilateral anisometropic amblyopia between the ages of 6 and 12 were randomly selected from the ophthalmology clinic of Fuyang People's Hospital, while 60 children with non-amblyopia in the same age range were randomly selected as a normal control group. The right eye was uniformly taken in the control group with at least 6 months of follow-up.

View Article and Find Full Text PDF

Anatomy-driven segmentation of parafoveal optical coherence tomography (OCT) measures may improve associations with clinical outcomes in multiple sclerosis.

J Neurol

January 2025

Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.

Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.

Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.

View Article and Find Full Text PDF

Purpose: To evaluate the posterior scleral stiffness of different regions in high myopic eyes and to explore its associations with macular choroidal and peripapillary retinal nerve fiber layer (pRNFL) thickness and vasculature.

Methods: Thirty subjects with high myopic eyes and 30 subjects with low myopic eyes were included in this study. The elastic modulus of the macular and peripapillary sclera at the temporal, nasal, superior and inferior regions were determined via shear wave elastography (SWE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!