The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery.

Biomolecules

Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.

Published: March 2023

Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046452PMC
http://dx.doi.org/10.3390/biom13030571DOI Listing

Publication Analysis

Top Keywords

stroke recovery
8
microglial activation
8
impact neuroplasticity
8
stroke
6
neuroplasticity
5
implications microglial
4
microglial regulation
4
regulation neuroplasticity-dependent
4
neuroplasticity-dependent stroke
4
recovery
4

Similar Publications

Objective Thyroid hormones (TH) control a variety of processes in the central nervous system and influence its response to different stimuli, such as ischemic stroke. Post-stroke administration of 3,3',5-triiodo-L-thyronine (T3) has been reported to substantially improve outcomes, but the optimal dosage and time window remain elusive. Methods Stroke was induced in mice by transient middle cerebral artery occlusion (tMCAO) and T3 was administered at different doses and time points before and after stroke.

View Article and Find Full Text PDF

Unlabelled: Stroke patients are rarely asked about their responses to specific design attributes. Virtual reality (VR) offers a promising tool to explore how hospital environments are experienced after stroke.

Purpose: To gather perspectives and emotional responses regarding physical design attributes of hospital patient rooms after stroke.

View Article and Find Full Text PDF

Acute ischemic stroke, a medical emergency caused by reduced cerebral blood flow, results in brain cell damage. While commonly associated with older individuals, strokes can also occur in young and middle-aged adults, posing significant socio-economic and health challenges due to the long-term impact of the condition. This poses significant socio-economic and health challenges because stroke is a leading cause of disability and mortality.

View Article and Find Full Text PDF

Body awareness (BA) is a complex multi-dimensional construct that refers to the subject's ability to consciously perceive and integrate sensory and proprioceptive information related to the position, movement, and balance of one's own body and body parts. Since it involves multiple brain regions and include different functional networks, it is very often affected by cerebrovascular damage such as stroke. Deficits in the ability to monitor our actions and predict their consequences or recognize our body parts and distinguish them from those of others may emerge after stroke.

View Article and Find Full Text PDF

A 69-year-old right-handed man, who initially suffered a stroke 8 years ago and experienced two recurrences since then, presented with right hemiplegia and left hemispatial neglect as a post-stroke syndrome in the chronic phase. This report demonstrates the use of active musical instrument playing with Musical Neglect Training (MNT®) to improve severe left-side neglect and activities of daily living (ADLs). In addition to physical and occupational therapy, individual MNT® was incorporated into the patient's rehabilitation plan to improve his hemispatial neglect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!