Saro_0803 is a transcriptional factor modulating the transcription of the stilbene-degrading enzyme gene in DSM 12444. Reportedly, Saro_0803 undergoes resveratrol-mediated dissociation from the promotor and distinguishes resveratrol from its precursors, -coumaric acid and trans-cinnamic acid, enabling the transcriptional factor to serve as a biosensor component for regulating resveratrol biosynthesis. However, little is known about the molecular mechanisms underlying the Saro_0803 interactions with either the promotor gene or resveratrol, which undermines the potential for Saro_0803 to be further modified for improved biosynthetic performance and other applications. Here, we report the discovery of the 22 bp A/T-rich Saro_0803 binding site near the -10 box of the promotor (named ). As validated by molecular docking-guided mutagenesis and binding affinity assays, the Saro_0803 binding of its target DNA sequence relies on charge-predominating interactions between several typical positively charged residues and nucleic acid. Furthermore, we semi-quantified the influence of resveratrol presence on Saro_0803- interaction and identified a bilateral hydrophobic pocket within Saro_0803 comprising four aromatic residues that are crucial to maintaining the resveratrol binding capability of the transcriptional factor. Our data are beneficial to understanding saro_0803's structural and functional properties, and could provide theoretical clues for future adaptations of this transcriptional factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046596 | PMC |
http://dx.doi.org/10.3390/biom13030541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!