Albumin is a highly abundant plasma protein with multiple functions, including the balance of fluid between body compartments and fatty acid trafficking. Humans with congenital analbuminemia (CAA) do not express albumin due to homozygosity for albumin gene mutation. Lessons about physiological control could be learned from CAA. Remarkably, these patients exhibit an apparently normal lifespan, without substantial impairments in physical functionality. There was speculation that tolerance to albumin deficiency would be characterized by significant upregulation of other plasma proteins to compensate for analbuminemia. It is unknown but possible that changes in plasma protein expression observed in CAA are required for the well-documented survival and general wellness. A systematic review of published case reports was performed to assess plasma protein pattern remodeling in CAA patients who were free of other illnesses that would confound interpretation. From a literature search in Pubmed, Scopus, and Purdue Libraries (updated October 2022), concentration of individual plasma proteins and protein classes were assessed. Total plasma protein concentration was below the reference range in the vast majority of CAA patients in the analysis, as upregulation of other proteins was not sufficient to prevent the decline of total plasma protein when albumin was absent. Nonetheless, an impressive level of evidence in the literature indicated upregulated plasma levels of multiple globulin classes and various specific proteins which may have metabolic functions in common with albumin. The potential role of this altered plasma protein expression pattern in CAA is discussed, and the findings may have implications for other populations with hypoalbuminemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046341 | PMC |
http://dx.doi.org/10.3390/biom13030407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!