Fence-post catheter techniques are used to use tumor margins when resecting gliomas. In the present study, deep electrodes instead of catheters were used as fence-posts. The case of a 25-year-old female patient whose magnetic resonance images (MRI) revealed a tumor in the left cingulate gyrus is presented in this study. She underwent daily seizures without loss of consciousness under the administration of anti-seizure medications. Despite video electroencephalography (EEG) monitoring, the scalp inter-ictal EEG did not show obvious epileptiform discharges. We were consequently uncertain whether such frequent seizures were epileptic seizures or not. As a result, deep electrodes were used as fence-posts: three deep electrodes were inserted into the tumor's anterior, lateral, and posterior margins using a navigation-guided method. The highest epileptic discharge was detected from the anterior deep electrode. As a result, ahead of the tumor was extendedly resected, and epileptic discharges were eliminated using EEG. The postoperative MRI revealed that the tumor was resected. The patient has never experienced seizures after the surgery. In conclusion, when supratentorial gliomas complicated by frequent seizures are resected, intraoperative EEG monitoring using deep electrodes as fence-posts is useful for estimating epileptogenic areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046720 | PMC |
http://dx.doi.org/10.3390/brainsci13030482 | DOI Listing |
Epilepsia
January 2025
Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.
Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.
Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany
Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.
View Article and Find Full Text PDFAsian J Psychiatr
December 2024
OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), India.
Deep Brain Stimulation is a form of neurostimulation where electrical stimulation is delivered via intracranial electrodes over specific subcortical targets. It has been increasingly used as an alternative to ablative procedures for psychiatric disorders refractory to standard treatments. This review describes the common psychiatric indications for DBS, the current evidence base, putative mechanisms, and future directions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!