A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating Students' Pre-University Admission Requirements and Their Correlation with Academic Performance for Medical Students: An Educational Data Mining Approach. | LitMetric

Medical education is one of the most sought-after disciplines for its prestigious and noble status. Institutions endeavor to identify admissions criteria to register bright students who can handle the complexity of medical training and become competent clinicians. This study aims to apply statistical and educational data mining approaches to study the relationship between pre-admission criteria and student performance in medical programs at a public university in Saudi Arabia. The present study is a retrospective cohort study conducted at the College of Computer Science, King Khalid University, Abha, Kingdom of Saudi Arabia between February and November 2022. The current pre-admission criterion is the admission score taken as the weighted average of high school percentage (HSP), general aptitude test (GAT) and standard achievement admission test (SAAT), with respective weights of 0.3, 0.3 and 0.4. Regression and optimization techniques have been applied to identify weightages that better fit the data. Five classification techniques-Decision Tree, Neural Network, Random Forest, Naïve Bayes and K-Nearest Neighbors-are employed to develop models to predict student performance. The regression and optimization analyses show that optimized weights of HSP, GAT and SAAT are 0.3, 0.2 and 0.5, respectively. The results depict that the performance of the models improves with admission scores based on optimized weightages. Further, the Neural Network and Naïve Bayes techniques outperform other techniques. Firstly, this study proposes to revise the weights of HSP, GAT and SAAT to 0.3, 0.2 and 0.5, respectively. Secondly, as the evaluation metrics of models remain less than 0.75, this study proposes to identify additional student features for calculating admission scores to select ideal candidates for medical programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046873PMC
http://dx.doi.org/10.3390/brainsci13030456DOI Listing

Publication Analysis

Top Keywords

performance medical
8
educational data
8
data mining
8
student performance
8
medical programs
8
saudi arabia
8
regression optimization
8
neural network
8
naïve bayes
8
weights hsp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!