Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increasing evidence is suggesting that amyloid-β peptide (Aβ), a characteristic of Alzheimer's disease (AD), induces oxidative stress and mitochondrial dysfunction, leading to neuronal death. This study aimed to demonstrate the antioxidant and anti-apoptotic effects of fucoxanthin, a major marine carotenoid found in brown algae, against neuronal injury caused by Aβ. Non-toxic dose range of fucoxanthin (0.1-5 µM) were selected for the neuroprotective study against Aβ. The PC12 cells were pretreated with different concentrations of fucoxanthin for 1 h before being exposed to 10 µM Aβ for another 24 h. The present results showed that fucoxanthin inhibited Aβ-induced cell death by recovering cell cycle arrest and decreasing intracellular reactive oxygen species (ROS) level. The compound enhanced mitochondrial recovery and regulated apoptosis related proteins including B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) from Aβ-induced oxidative stress. Concomitantly, fucoxanthin increased the expression of nuclear factor E2-related factor 2 (Nrf2) and its downstream phase II detoxifying enzymes including NADPH: quinone oxidoreductase-1 (NQO-1), glutamate cysteine ligase modifier subunit (GCLm), and thioredoxin reductase 1 (TrxR1), whereas it decreased the expression of cytoplasmic Kelch-like ECH-associated protein 1 (Keap1). Moreover, pretreatment of fucoxanthin reduced Fyn phosphorylation via protein kinase B (Akt)-mediated inhibition of glycogen synthase kinase-3β (GSK-3β), which increased the nuclear localization of Nrf2, suggesting that the compound enhanced Nrf2 expression by the activation of upstream kinase as well as the dissociation of the Nrf2-Keap1 complex. Further validation with a specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 demonstrated that the fucoxanthin-mediated Nrf2 antioxidant defense system was directly associated with the Akt/GSK-3β/Fyn signaling pathway. In silico simulation revealed that the oxygen groups of fucoxanthin participated in potent interactions with target markers in the Nrf2 signaling pathway, which may affect the biological activity of target markers. Taken together, the present results demonstrated that the preventive role of fucoxanthin on Aβ-stimulated oxidative injury and apoptosis via Akt/GSK-3β/Fyn signaling pathway. This study would provide a useful approach for potential intervention for AD prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045033 | PMC |
http://dx.doi.org/10.3390/antiox12030629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!