Although the precise mechanisms for neurodegeneration in Parkinson's disease (PD) are unknown, evidence suggests that neuroinflammation is a critical factor in the pathogenic process. Here, we sought to determine whether the voltage-gated proton channel, Hv1 (HVCN1), which is expressed in microglia and regulates NADPH oxidase, is associated with dopaminergic neurodegeneration. We utilized data mining to evaluate the mRNA expression of in the brains of PD patients and controls and uncovered increased expression of the gene encoding Hv1, in the brains of PD patients compared to controls, specifically in male PD patients. In an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 16 mg/kg) mouse model of PD, gene expression was increased 2-fold in the striatum. MPTP administration to wild-type (WT) mice resulted in a ~65% loss of tyrosine hydroxylase positive neurons (TH) in the substantia nigra (SN), while a ~39% loss was observed in Hv1 knockout (KO) mice. Comparable neuroprotective effects of Hv1 deficiency were found in a repeated-dose LPS model. Neuroprotection was associated with decreased pro-inflammatory cytokine levels and pro-oxidant factors in both neurotoxicant animal models. These in vivo results were confirmed in primary microglial cultures, with LPS treatment increasing mRNA levels and Hv1 KO microglia failing to exhibit the LPS-mediated inflammatory response. Conditioned media from Hv1 KO microglia treated with LPS resulted in an attenuated loss of cultured dopamine neuron cell viability compared to WT microglia. Taken together, these data suggest that Hv1 is upregulated and mediates microglial pro-inflammatory cytokine production in parkinsonian models and therefore represents a novel target for neuroprotection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044828PMC
http://dx.doi.org/10.3390/antiox12030582DOI Listing

Publication Analysis

Top Keywords

voltage-gated proton
8
proton channel
8
hv1
8
channel hv1
8
dopaminergic neurodegeneration
8
neurodegeneration parkinson's
8
parkinson's disease
8
brains patients
8
pro-inflammatory cytokine
8
hv1 microglia
8

Similar Publications

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.

View Article and Find Full Text PDF

Discovery of novel pyrazoline insecticides.

Pest Manag Sci

November 2024

BASF Corp, Research Triangle Park, NC, USA.

Background: The pyrazoline insecticides, invented by Philips Duphar in the 1970s, provide excellent control of lepidopterans and coleopterans and introduced a novel mode of action (MoA) as sodium-channel-blocking insecticides, but were not commercialized due to unacceptable persistence. This MoA is less explored, with only two successfully commercialized insecticides derived from the pyrazoline class - the oxadiazine indoxacarb from FMC (developed by DuPont) and the semicarbazone metaflumizone, co-developed by BASF and Nihon Nohyaku.

Results: The design and synthesis of novel pyrazoline insecticides with improved biological efficacy and favorable environmental fate profile are described.

View Article and Find Full Text PDF
Article Synopsis
  • Voltage-clamp fluorometry (VCF) combines electrophysiology and fluorescence to study ion channels, providing real-time insights into their structural changes and functions.* -
  • Acid-sensing ion channels (ASICs) play a key role in detecting pH changes, impacting pain, fear, learning, and neurodegeneration post-stroke, as demonstrated in animal studies.* -
  • The review details VCF's techniques, including fluorescence resonance energy transfer and unnatural fluorescent amino acids, and highlights how VCF has revealed conformational changes in ASICs, enhancing our understanding of their functional states.*
View Article and Find Full Text PDF

A General Hydrotrifluoromethylation of Unactivated Olefins Enabled by Voltage-Gated Electrosynthesis.

Angew Chem Int Ed Engl

October 2024

Department of Chemistry, Northwestern University, 2145N Sheridan Road, Evanston, IL, 60208, USA.

Here we present the first successful hydrotrifluoromethylation of unactivated olefins under electrochemical conditions. Commercially available trifluoromethyl thianthrenium salt (TT-CFBF , E=-0.85 V vs Fc/Fc) undergoes electrochemical reduction to generate CF radicals which add to olefins with exclusive chemoselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!