subsp. is a zoonotic bacterial pathogen that causes foodborne outbreaks in humans. Lytic bacteriophages to control in food production are already being used in scientific studies and some are commercially available. However, phage application is still controversial. In addition to virulent phages, which are used in phage therapy and lyse the bacterial host, lysogenic phages coexist in the environment and can reside as prophages in the bacterial host. Therefore, information about prophages is essential to understand successful phage therapy. In 100 food isolates of the serovars Enteritidis and Typhimurium, we propagated prophages by oxidative stress. In isolates of the serovars Typhimurium and Enteritidis, 80% and 8% prophages could be activated, respectively. In the phage lysates from the serovar Typhimurium, the following antibiotic resistance genes or gene fragments were detected by PCR: , , , and ; however, no ,,, , , , , or were detected. In contrast, no resistance genes were amplified in the phage lysates of the serovar Enteritidis. None of the phage lysates was able to transduce phenotypic resistance to WT 14028s. Most of the prophage lysates isolated were able to infect the various serovars tested. The high abundance of prophages in the genome of the serovar Typhimurium may counteract phage therapy through phage resistance and the development of hybrid phages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045043 | PMC |
http://dx.doi.org/10.3390/antibiotics12030595 | DOI Listing |
Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea. Electronic address:
This study was designed to evaluate the combined antimicrobial activity of selected phage cocktail (MS2+T7 phages) and essential oils (cinnamon, clove, oregano, and thymol) against Escherichia coli ATCC 15597. To select most effective phages, the lytic abilities of individual phages (MS2, phiX174, and T7) and their phage combinations were assessed using the phage spot test and plaque assay at various multiplicity of infections (MOIs) ranging from 0.01 to 100.
View Article and Find Full Text PDFTher Adv Infect Dis
January 2025
Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana.
Background: Lower respiratory tract infections (LRTIs) pose a significant threat to global health, causing more than 2 million deaths worldwide. This menace is intensified by the alarming increase in drug resistance, which limits the availability of effective antibiotics for bacterial respiratory infections. Consequently, there is an urgent demand for alternative therapeutic options.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!