A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tuning Carbon Defect in Copper Single-Atom Catalysts for Efficient Oxygen Reduction. | LitMetric

Tuning Carbon Defect in Copper Single-Atom Catalysts for Efficient Oxygen Reduction.

Small

Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Published: July 2023

Defect chemistry in carbon matrix shows great potential for promoting the oxygen reduction reaction (ORR) of metal single-atom catalysts. Herein, a modified pyrolysis strategy is proposed to tune carbon defects in copper single-atom catalysts (Cu-SACs) to fully understand their positive effect on the ORR activity. The optimized Cu-SACs with controllable carbon defect degree and enhanced active specific surface area can exhibit improved ORR activity with a half-wave potential of 0.897 V , ultrahigh limiting current density of 6.5 mA cm , and superior turnover frequency of 2.23 e site s . The assembled Zn-air batteries based on Cu-SACs can also show well-retained reversibility and voltage platform over 1100 h charge/discharge period. Density functional theory calculations reveal that suitable carbon defects can redistribute charge density of Cu-N4 active sites to weaken the O-O bond in adsorbed OOH* intermediate and thus reduce its dissociation energy. This discovery offers a universal strategy for fabricating superior single-atom catalysts with high-efficiency active sites toward energy-directed applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202301075DOI Listing

Publication Analysis

Top Keywords

single-atom catalysts
16
carbon defect
8
copper single-atom
8
oxygen reduction
8
carbon defects
8
orr activity
8
active sites
8
tuning carbon
4
defect copper
4
single-atom
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!