Background: Post-hepatectomy liver failure (PHLF) represents the major source of mortality after liver resection (LR) in hepatocellular carcinoma (HCC) patients. Child-Pugh (CP) score 5 is always considered to indicate a normal liver function but represents a heterogeneous population with a considerable number suffering from PHLF. The present study aimed to access the ability of liver stiffness (LS) measured by two-dimensional shear wave elastography (2D-SWE) to predict PHLF in HCC patients with a CP score of 5.

Methods: From August 2018 to May 2021, 146 HCC patients with a CP score of 5 who underwent LR were reviewed. The patients were randomly divided into training (n = 97) and validation (n = 49) groups. Logistic analyses were conducted for the risk factors and a linear model was built to predict the development of PHLF. The discrimination and calibration were assessed in the training and validation cohorts by the areas under the receiver operating characteristic curve (AUC).

Results: Analyses revealed that the minimum of LS (Emin) higher than 8.05 (p = 0.006, OR = 4.59) and future liver remnant / estimated total liver volume (FLR/eTLV) (p < 0.001, OR < 0.01) were independent predictors of PHLF in HCC patients with CP score 5, and the AUC calculated by the model based on them for differentiation of PHLF in the training and validation group was 0.78 and 0.76, respectively.

Conclusion: LS was associated with the development of PHLF. A model combining Emin and FLR/eTLV showed proper ability in predicting PHLF in HCC patients with a CP score of 5.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11605-023-05635-7DOI Listing

Publication Analysis

Top Keywords

hcc patients
12
liver
8
post-hepatectomy liver
8
liver failure
8
hepatocellular carcinoma
8
liver stiffness
8
patients score
8
patients
5
predicting post-hepatectomy
4
failure preoperatively
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!