Evaluation of the Role of Self-cleaning Capacity on Marine Environmental Carrying Capacity: A Case of Ganh Rai Bay, Vietnam.

Arch Environ Contam Toxicol

Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.

Published: October 2023

Economic activities are constantly increasing in the southern key economic region (SKER), especially in Ho Chi Minh City (HCMC), which leads to the influx of large amounts of wastewater from this region into Ganh Rai Bay (GRB). The problem of assessing the marine environmental carrying capacity (MECC) of coastal areas is urgent, and the role of self-cleaning must be elucidated. Four typical pollution parameters were selected: ammonium (NH), biological oxygen demand (BOD), phosphate (PO), and coliforms. The study aims to propose a framework to assess the impact of the role of self-cleaning on MECC and to apply the proposed framework to GRB as a case study. A series of models were used to simulate hydrodynamics, and an advection-diffusion model with an ecological parameter set was used for water quality modelling. The land-ocean interactions in the coastal zone model were used to calculate the GRB and East Sea retention time. Finally, a multiple linear regression model was used to clarify the relationship between the MECC and self-cleaning factors. Calculation results show that the self-cleaning factor increased the MECC by 60.30% in the dry season and 22.75% in the wet season; similar to MECC, MECC increased by 5.26%, 0.21% (dry season), and 11.04%, 0.72% (wet season), respectively. MECCC in the dry season increased by 14.83%; in the wet season, MECC doubled. The results provide medium-and long-term solutions to improve the water quality of the GRB, especially the selection of activities that conserve the ecological system and improve the self-cleaning capacity of the bay.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-023-00989-0DOI Listing

Publication Analysis

Top Keywords

role self-cleaning
12
dry season
12
wet season
12
self-cleaning capacity
8
marine environmental
8
environmental carrying
8
carrying capacity
8
ganh rai
8
rai bay
8
water quality
8

Similar Publications

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Molecules

January 2025

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.

View Article and Find Full Text PDF

The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes.

Micromachines (Basel)

December 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.

View Article and Find Full Text PDF

This review discusses the key factors influencing the exceptional thermal resistance and surface properties of silicone-containing composites. Silicone polymers, known for their excellent chemical and physical properties, are widely used in a number of innovative products. In order to make silicone composites suitable for innovative applications, it is essential to ensure that they have both very good thermal resistance and superhydrophobic properties.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have attracted significant interest in recent years owing to their unique physicochemical properties, including antimicrobial reduction capabilities, photocatalytic activity, self-cleaning features, superhydrophobicity, and electrical conductivity. Their characteristics render them highly advantageous for various textile, electronics, food and agriculture, water treatment, and biomedical applications. This detailed analysis explores the recent benefits and drawbacks of various synthesis methods, immobilization techniques, and characterization of AgNPs while emphasizing novel strategies that improve their functionality across different substrates.

View Article and Find Full Text PDF

Facile Formation of Durable SiO-TiO Coatings on Plastic Films for Self-Cleaning and Antifogging.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!