The interaction between the stem-loop structure of the Alzheimer's amyloid precursor protein IRE mRNA and iron regulatory protein was examined by employing molecular docking and multi-spectroscopic techniques. A detailed molecular docking analysis of APP IRE mRNA∙IRP1 reveals that 11 residues are involved in hydrogen bonding as the main driving force for the interaction. Fluorescence binding results revealed a strong interaction between APP IRE mRNA and IRP1 with a binding affinity and an average binding sites of 31.3 × 10 M and 1.0, respectively. Addition of Fe(anaerobic) showed a decreased (3.3-fold) binding affinity of APP mRNA∙IRP1. Further, thermodynamic parameters of APP mRNA∙IRP1 interactions were an enthalpy-driven and entropy-favored event, with a large negative ΔH (-25.7 ± 2.5 kJ/mol) and a positive ΔS (65.0 ± 3.7 J/mol·K). A negative ΔH value for the complex formation suggested the contribution of hydrogen bonds and van der Waals forces. The addition of iron increased the enthalpic contribution by 38% and decreased the entropic influence by 97%. Furthermore, the stopped-flow kinetics of APP IRE mRNA∙IRP1 also confirmed the complex formation, having the rate of association (k) and the rate of dissociation (k) as 341 μM s, and 11 s, respectively. The addition of Fe has decreased the rate of association (k) by ~ three-fold, whereas the rate of dissociation (k) has increased by ~ two-fold. The activation energy for APP mRNA∙IRP1 complex was 52.5 ± 2.1 kJ/mol. The addition of Fe changed appreciably the activation energy for the binding of APP mRNA with IRP1. Moreover, circular dichroism spectroscopy has confirmed further the APP mRNA∙IRP1 complex formation and IRP1 secondary structure change with the addition of APP mRNA. In the interaction between APP mRNA and IRP1, iron promotes structural changes in the APP IRE mRNA∙IRP1 complexes by changing the number of hydrogen bonds and promoting a conformational change in the IRP1 structure when it is bound to the APP IRE mRNA. It further illustrates how IRE stem-loop structure influences selectively the thermodynamics and kinetics of these protein-RNA interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050399PMC
http://dx.doi.org/10.1038/s41598-023-32073-xDOI Listing

Publication Analysis

Top Keywords

app ire
20
app mrna∙irp1
16
molecular docking
12
ire mrna
12
app
12
ire mrna∙irp1
12
mrna irp1
12
complex formation
12
app mrna
12
alzheimer's amyloid
8

Similar Publications

Iron Responsiveness to Lysosomal Disruption: A Novel Pathway to Alzheimer's Disease.

J Alzheimers Dis

October 2023

Neurochemistry Laboratory, Massachusetts General Hospital (East), and Harvard Medical School, Charlestown, MA, USA.

Familial Alzheimer's disease (fAD) mutations in the amyloid-β protein precursor (AβPP) enhance brain AβPP C-Terminal Fragment (CTF) levels to inhibit lysosomal v-ATPase. Consequent disrupted acidification of the endolysosomal pathway may trigger brain iron deficiencies and mitochondrial dysfunction. The iron responsive element (IRE) in the 5'Untranslated-region of AβPP mRNA should be factored into this cycle where reduced bioavailable Fe-II would decrease IRE-dependent AβPP translation and levels of APP-CTFβ in a cycle to adaptively restore iron homeostasis while increases of transferrin-receptors is evident.

View Article and Find Full Text PDF

The interaction between the stem-loop structure of the Alzheimer's amyloid precursor protein IRE mRNA and iron regulatory protein was examined by employing molecular docking and multi-spectroscopic techniques. A detailed molecular docking analysis of APP IRE mRNA∙IRP1 reveals that 11 residues are involved in hydrogen bonding as the main driving force for the interaction. Fluorescence binding results revealed a strong interaction between APP IRE mRNA and IRP1 with a binding affinity and an average binding sites of 31.

View Article and Find Full Text PDF

Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen is a promising drug candidate for neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.

View Article and Find Full Text PDF

Iron-responsive-like elements and neurodegenerative ferroptosis.

Learn Mem

September 2020

Neurochemistry Laboratory, Massachusetts General (east), Harvard Medical School, Department of Psychiatry Neuroscience, Charlestown, Massachusetts 02129, USA.

A set of common-acting iron-responsive 5'untranslated region (5'UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aβ from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem-loops reside in their transcripts.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common cause of dementia, is a neurodegenerative disorder characterized by amyloid plaque accumulations, intracellular tangles and neuronal loss in certain brain regions. It has been shown that a disturbance of normal iron metabolism contributes to the pathophysiology of AD. However, the mechanism underlying abnormal iron load in the brain of AD patients is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!