Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.122888 | DOI Listing |
Int J Pharm
January 2025
Faculty of Pharmacy, Almarisah Madani University, Makassar, Indonesia; Department of Pharmacy and Pharmaceutical Technology, Almarisah Madani University, Makassar, Indonesia. Electronic address:
The combination of the active compounds curcumin and piperine (CP) is effective as an antimalarial; however, the solubility and bioavailability of CP are very low. This study aims to formulate CP in nanoparticles (NP), which are then fabricated into dissolving microneedles (DMN). The NPs were prepared with a concentration ratio of CP-Chitosan-So.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects.
View Article and Find Full Text PDFInt J Pharm
January 2025
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India. Electronic address:
Tofacitinib, a Janus kinase (JAK) inhibitor, has emerged as a primary therapeutic agent for managing autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, dermatitis and ulcerative colitis. By inhibiting the phosphorylation of JAK enzymes, tofacitinib prevents their activation within the JAK-STAT signaling pathway, which is vital for inflammatory responses. However, the tofacitinib delivery presents significant challenges, including pH-dependent solubility, poor permeability and susceptibility to oral degradation.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan.
Bioabsorbable polymer microneedles are highly attractive as modernized medical devices for efficient yet safe transdermal drug delivery and biofluid biopsy. In this study, the elastoplastic deformation of polymer microneedles, having a high aspect ratio (over 5-10), is investigated using poly(lactic) acid polymer approved by the United States Food and Drug Administration to be generally considered safe. Microneedle geometries are comprehensively analyzed for tip geometries comprising the tip diameter (ϕ) and tip taper length (l) of 100 designs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!