Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aimed to improve the understanding of the nutrient modulation of cf. toxin content. During the 2018 natural bloom in the NW Mediterranean, the total toxin content (up to ca. 57.6 ± 7.0 pg toxin cell) varied markedly. The highest values often coincided with elevated cf. cell abundance and with low inorganic nutrient concentrations. The first culture experiment with a strain isolated from that bloom showed that cell toxin content was higher in the stationary than in the exponential phase of the cultures; phosphate- and nitrate-deficient cells exhibited similar cell toxin variability patterns. The second experiment with different conditions of nitrogen concentration and source (nitrate, urea, ammonium, and fertilizer) presented the highest cellular toxin content in the high-nitrogen cultures; among these, urea induced a significantly lower cellular toxin content than the other nutrient sources. Under both high- and low-nitrogen concentrations, cell toxin content was also higher in the stationary than in the exponential phase. The toxin profile of the field and cultured cells included ovatoxin (OVTX) analogues -a to -g and isobaric PLTX (isoPLTX). OVTX-a and -b were dominant while OVTX-f, -g, and isoPLTX contributed less than 1-2%. Overall, the data suggest that although nutrients determine the intensity of the cf. bloom, the relationship of major nutrient concentrations, sources and stoichiometry with cellular toxin production is not straightforward.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057244 | PMC |
http://dx.doi.org/10.3390/toxins15030188 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!