Potentially toxic elements (PTEs) pollution occurs widely in soils due to various anthropogenic activities. Lead (Pb) and cadmium (Cd) coexist in soil frequently, threatening plant growth. To explore the interaction effect between Pb and Cd in and the response of plant physiological characteristics to Pb and Cd stress, we designed a soil culture experiment. The experiment demonstrated that Pb stress improved leaf photosynthesis ability, while Cd stress inhibited it. Furthermore, Pb or Cd stress increased malonaldehyde (MDA) content, but plants were able to reduce it by increasing antioxidant enzyme activities. The presence of Pb could alleviate Cd phytotoxicity in plants by inhibiting Cd uptake and accumulation as well as increasing leaf photosynthesis and antioxidant ability. Pearson correlation analysis illustrated that the variability of Cd uptake and accumulation between Pb and Cd stress was related to plant biomass and antioxidant enzyme activities. This research will offer a new perspective on alleviating Cd phytotoxicity in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054560 | PMC |
http://dx.doi.org/10.3390/toxics11030271 | DOI Listing |
Biol Trace Elem Res
January 2025
College of Arts & Sciences, American University of Kuwait, P.O. Box 3323, 13034, Safat, Kuwait.
Infants are particularly vulnerable to exposure to toxic trace elements due to their developmental stage and behaviors such as mouthing and chewing on toys. Chemical exposure to heavy metals in infants' toys is a significant concern as it poses a threat to their health and well-being. Therefore, quality control measures are essential to prevent infants' exposure to potentially harmful metals.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
The impact of lead and cadmium exposure on subclinical cardiovascular disease (CVD), indicated by elevated high-sensitivity cardiac troponin (hs-cTnT) and N-terminal pro b-type natriuretic peptide (NT-proBNP) remains uncertain. We analyzed data from participants aged 20 and older, without overt CVD, in the National Health and Nutrition Examination Survey (NHANES; 1999-2004). Elevated lead and cadmium levels were defined as 3.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
Sodium chloride, commonly referred to as table salt, is the most widely utilized seasoning in culinary applications. Nevertheless, the most of oral salts used contain impurities. Arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb) are the most common impurities found in salt.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Military Health Department, Veterinary Service Centre, Ministry of Defence of Republic of Serbia, Crnotravska 17, 11000, Belgrade, Serbia.
Three fish species (common carp, Wels catfish, and silver carp) were collected from three locations along the Danube River in Serbia, and fish meat was analyzed for the content of toxic elements, micro- and macrominerals. Silver carp had the highest lead (Pb), arsenic (As), and cadmium (Cd) content, while Wels catfish had the highest level of mercury (Hg). Moreover, metal pollution index (MPI) ranged from 0.
View Article and Find Full Text PDFPeerJ
January 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America.
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!