If evolution was/is a fact, a simplified/unifying approach to explain cellular physiology is warranted. Such a perspective should agree with the thermodynamic, kinetic, structural, and operational-probabilistic considerations; without invoking overt intelligence or determinism, and must enable a synthesis from chaos. In this regard, we first list salient theories in cellular physiology for (i) powering (generation of chemical/heat energy), (ii) coherence (interconnectivity and workability as a unit), (iii) homeostasis (metabolizing and expelling of unfamiliar/unwanted materials, maintaining concentration/volume), and (iv) cellular electrical-mechanical activities. While doing so, we discuss the scopes and limitations of (a) the classical active-site affinity and recognition-based modality of lock-key and induced-fit enzyme-catalytic mechanisms established by Fischer/Koshland, (b) membrane-pump hypothesis acclaimed by biologists-physicians and historically championed by the British Nobel-laureates like Hodgkin-Huxley-Katz-Mitchell, and (c) association-induction hypothesis advocated by physicists-physiologists from various parts of the world, for example, Gilbert Ling (China-USA), Gerald Pollack (USA), Ludwig Edelmann (Germany), Vladimir Matveev (Russia), and so on. We apply murburn concept (from "mured burning," capturing the thesis that one-electron redox equilibriums involving diffusible reactive species play vital roles in maintaining life order) to amalgamate several core cellular functions and further discuss the prospects for establishing the continuum of the principles of physics in biology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.31000DOI Listing

Publication Analysis

Top Keywords

theories cellular
8
murburn concept
8
cellular physiology
8
cellular
5
synthesis theories
4
cellular powering
4
powering coherence
4
coherence homeostasis
4
homeostasis electro-mechanics
4
electro-mechanics murburn
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Background: Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate.

Methods: We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner.

View Article and Find Full Text PDF

Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.

View Article and Find Full Text PDF

Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: distribution, influencing factors, and transmission mechanisms.

Environ Pollut

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China. Electronic address:

Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated.

View Article and Find Full Text PDF

Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!