Collagen Hydrogel Containing Polyethylenimine-Gold Nanoparticles for Drug Release and Enhanced Beating Properties of Engineered Cardiac Tissues.

Adv Healthc Mater

Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nuremberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany.

Published: August 2023

Cardiac tissue engineering is a promising strategy to prevent heart failure. However, several issues remain unsolved, including efficient electrical coupling and incorporating factors to enhance tissue maturation and vascularization. Herein, a biohybrid hydrogel that enhances beating properties of engineered cardiac tissues and allows drug release concurrently is developed. Gold nanoparticles (AuNPs) with different sizes (18-241 nm) and surface charges (33.9-55.4 mV) are synthesized by reducing gold (III) chloride trihydrate using branched polyethyleneimine (bPEI). These nanoparticles increase gel stiffness from ≈91 to ≈146 kPa, enhance electrical conductivity of collagen hydrogels from ≈40 to 49-68 mS cm , and allow slow and steady release of loaded drugs. Engineered cardiac tissues based on bPEI-AuNP-collagen hydrogels and either primary or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes show enhanced beating properties. hiPSC-derived cardiomyocytes exhibit more aligned and wider sarcomeres in bPEI-AuNP-collagen hydrogels compared to collagen hydrogels. Furthermore, the presence of bPEI-AuNPs result in advanced electrical coupling evidenced by synchronous and homogenous calcium flux throughout the tissue. RNA-seq analyses are in agreement with these observations. Collectively, this data demonstrate the potential of bPEI-AuNP-collagen hydrogels to improve tissue engineering approaches to prevent heart failure and possibly treat diseases of other electrically sensitive tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468683PMC
http://dx.doi.org/10.1002/adhm.202202408DOI Listing

Publication Analysis

Top Keywords

beating properties
12
engineered cardiac
12
cardiac tissues
12
bpei-aunp-collagen hydrogels
12
drug release
8
enhanced beating
8
properties engineered
8
tissue engineering
8
prevent heart
8
heart failure
8

Similar Publications

This study examined the acute effects of dynamic stretching at different velocities on the neuromuscular system. Fourteen participants underwent four experimental sessions in random order: (1) control (lying at rest with the ankle in a neutral position); (2) slow velocity dynamic stretching (50 beats/min; SLOW); (3) moderate velocity dynamic stretching (70 beats/min; MOD); and (4) fast velocity dynamic stretching (90 beats/min; FAST). The stretching protocols consisted of four sets of 10 repetitions and targeted the plantar flexor muscles of the right ankle.

View Article and Find Full Text PDF

Significance: Dynamic phantoms capable of changing optical properties by control are essential for standardizing and calibrating spectroscopy systems such as the pulse oximeter. However, current liquid dynamic phantoms containing human blood have a short shelf life and require complex experimental setups. Some solid dynamic phantoms are influenced by the angular-dependent performance of the liquid crystal display (LCD), some have a low spatial resolution, and some have slow control of optical properties.

View Article and Find Full Text PDF

Collective sperm movement in mammalian reproductive tracts.

Semin Cell Dev Biol

December 2024

Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete.

View Article and Find Full Text PDF

Introduction: Propranolol is a beta-adrenoceptor blocking drug with sodium channel-blocking properties that can cause life-threatening toxicity in overdose. Limited research defines dose thresholds of toxicity. We aimed to investigate propranolol overdose and dose thresholds for severe toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Plant fibers play a crucial role in enhancing the physical strength and properties of reconstituted tobacco, affecting its overall mechanical performance.
  • The study analyzed how different types of plant fibers and their beating degrees influenced various mechanical properties, such as tensile strength and thermal conductivity.
  • It was found that softwood fibers provided the best improvement in physical properties at a specific beating degree, leading to significant increases in tensile strength and other key metrics for reconstituted tobacco.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!