Existing chaotic system exhibits unpredictability and nonrepeatability in a deterministic nonlinear architecture, presented as a combination of definiteness and stochasticity. However, traditional two-dimensional chaotic systems cannot provide sufficient information in the dynamic motion and usually feature low sensitivity to initial system input, which makes them computationally prohibitive in accurate time series prediction and weak periodic component detection. Here, a natural exponential and three-dimensional chaotic system with higher sensitivity to initial system input conditions showing astonishing extensibility in time series prediction and image processing is proposed. The chaotic performance evaluated theoretically and experimentally by Poincare mapping, bifurcation diagram, phase space reconstruction, Lyapunov exponent, and correlation dimension provides a new perspective of nonlinear physical modeling and validation. The complexity, robustness, and consistency are studied by recursive and entropy analysis and comparison. The method improves the efficiency of time series prediction, nonlinear dynamics-related problem solving and expands the potential scope of multi-dimensional chaotic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214267 | PMC |
http://dx.doi.org/10.1002/advs.202204269 | DOI Listing |
Cogn Neurodyn
December 2025
Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan.
Algebraic structures are highly effective in designing symmetric key cryptosystems; however, if the key space is not sufficiently large, such systems become vulnerable to brute-force attacks. To address this challenge, our research focuses on enlarging the key space in symmetric key schemes by integrating the non-chain ring with a four-dimensional chaotic system. While chaotic maps offer significant potential for data processing, relying solely on them does not fully leverage their operational advantages.
View Article and Find Full Text PDFLangmuir
January 2025
CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.
This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
Qualitative analysis in mathematical modeling has become an important research area within the broad domain of nonlinear sciences. In the realm of qualitative analysis, the bifurcation method is one of the significant approaches for studying the structure of orbits in nonlinear dynamical systems. To apply the bifurcation method to the (2 + 1)-dimensional double-chain Deoxyribonucleic Acid system with beta derivative, the bifurcations of phase portraits and chaotic behaviors, combined with sensitivity and multi-stability analysis of this system, are examined.
View Article and Find Full Text PDFA high security physical layer encryption scheme for dual-mode orthogonal frequency division multiplexing with index modulation (DM-OFDM-IM) in magnetic induction communication is proposed. The scheme utilizes DM-OFDM-IM, where subcarriers within each subblock are divided into two groups, each modulated by distinct signal constellations. DM-OFDM-IM leverages the sequential information from the modulated constellation to transmit extra information, leading to a substantial enhancement in spectral efficiency.
View Article and Find Full Text PDFChaos
January 2025
Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil.
The presence of chaos is ubiquitous in mathematical models of neuroscience. In experimental neural systems, chaos was convincingly demonstrated in membranes, neurons, and small networks. However, its effects on the brain have long been debated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!