Arbuscular mycorrhizal fungi (AMF) alter plant water relations and contribute to soil structure. Although soil hydraulic properties depend on soil structure and may limit plant water uptake, little is known about how AMF influence soil water retention (the relation between the soil water content and soil water potential) and hydraulic conductivity in different soils. Instead, these soil hydraulic properties often are considered to be independent of AMF presence in experiments. We asked if this assumption holds true for both sand and loam. We grew maize plants either inoculated with Rhizophagus irregularis or with autoclaved inoculum in pots filled with quartz sand or loam soil until extraradical spread of the fungus throughout the pots was achieved. Each pot contained a hyphal compartment made of a soil sampling core (250 cm) covered with a 20-µm nylon mesh to encourage fungus ingrowth but to exclude root ingrowth. We measured soil water retention and unsaturated hydraulic conductivity in these undisturbed root-free soil volumes. We observed that in loam harboring the mycorrhizal fungus, the soil water retention decreased, while in sand, it increased without detectable changes in the soil bulk density. The effects of the fungus on the soil water potential were strongest at low soil water contents in both soils. As a consequence of the altered water potentials in soils with the mycorrhizal fungus, soil hydraulic conductivity increased in loam but decreased in sand after fungus ingrowth. We conclude that in our study, the mycorrhizal fungus acted as a soil conditioner even distant from roots, which encouraged drainage in loams prone to sogginess but enhanced water storage in sands prone to quick desiccation. We recommend considering soil hydraulic properties as being dynamic in future studies on water relations of mycorrhizal plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244285 | PMC |
http://dx.doi.org/10.1007/s00572-023-01106-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!