The appropriate storage protocol is one of the main limitations of translating tissue engineering technology to commercialized clinical applications. Recently, the development of a chitosan-derived composite scaffold incorporated with bioactive molecules has been reported as an excellent material to repair a critical size bony defect in mice calvaria. This study aims to determine the storage time and appropriate storage temperature of Chitosan/Biphasic Calcium Phosphate/Trichostatin A composite scaffold (CS/BCP/TSA scaffold) in vitro. The mechanical properties and in vitro bioactivity of trichostatin A (TSA) released from CS/BCP/TSA scaffolds in different storage times and temperatures were evaluated. Different storage times (0, 14, and 28 days) and temperatures (-18, 4, and 25 °C) did not affect the porosity, compressive strength, shape memory, and amount of TSA released. However, scaffolds stored at 25 °C and 4 °C were found to lose their bioactivity after 3- and 7-day storage periods, respectively. Thus, the CS/BCP/TSA scaffold should be stored in freezing conditions to preserve the long-term stability of TSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054179PMC
http://dx.doi.org/10.3390/md21030175DOI Listing

Publication Analysis

Top Keywords

storage time
8
appropriate storage
8
composite scaffold
8
cs/bcp/tsa scaffold
8
tsa released
8
storage times
8
storage
7
scaffold
5
time temperature
4
temperature bioactivity
4

Similar Publications

CaCoO/rGO was prepared by combining a sol-gel strategy and mechanical ball milling method. The Rietveld refinement results demonstrated a single-phase structure with a monoclinic symmetry. When utilized as an anode for lithium-ion batteries, it exhibited excellent rate performance and electrochemical stability due to the significantly decreasing particle size as well as the formation of a conductive rGO network in the composite after ball milling.

View Article and Find Full Text PDF

Latent memory traces for prospective items in visual working memory.

J Exp Psychol Hum Percept Perform

January 2025

Department of Experimental Psychology, Helmholtz Institute, Utrecht University.

Visual working memory (VWM) is a capacity-limited cognitive system that is utilized for enabling goal-directed actions. When sampling items for VWM storage, however, observers are often exposed to other items that are not selected for imminent action (hereafter: "prospective items"). Here, we asked whether such exposure leads to memory buildup of these prospective items, facilitating subsequent VWM encoding for imminent action.

View Article and Find Full Text PDF

[The decline of analog radiological collection].

Andes Pediatr

October 2024

Facultad de Medicina, Universidad del Desarrollo, Santiago, Chile.

Throughout the 20th century, radiographs and fluoroscopies became essential elements to complete clinical evaluation. Images of the most relevant cases, together with their clinical records, were stored in the radiological collections of the hospitals. Over time, the need for physical space due to the emergence of new equipment, together with the digitization of radiographs and their digital storage, put an end to the collections, many of which were lost in a corner of modern X-ray services.

View Article and Find Full Text PDF

Linear Enhanced 3D Nanofluid Force-Electric Conversion Device.

Adv Mater

January 2025

Hubei key laboratory of energy storage and power battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China.

The inherent trade-off between permeability and selectivity has constrained further improvement of passive linear force-electric conversion performance in nanofluidic pressure sensors. To overcome this limitation, a 3D nanofluidic membrane with high mechanical strength utilizing aramid nanofibers/carbon nanofiber (ANF/CNF) dual crosslinking is developed. Due to the abundant surface functional groups of CNF and the high mechanical strength of ANF, this large-scale integrated 3D nanofluidic membrane exhibits advantages of high flux, high porosity, and short ion transport path, demonstrating superior force-electric response compared to conventional 1D and 2D configurations.

View Article and Find Full Text PDF

Probing the synergistic effects of amino compounds in mitigating oxidation in 2D TiCT MXene nanosheets in aqueous environments.

Chem Sci

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China

The shelf life of 2D MXenes in functional devices and colloidal dispersions is compromised due to oxidation in the aqueous system. Herein, a systematic investigation was carried out to explore the potential of various amino compounds as antioxidants for TiCT MXenes. A range of basic, acidic, and neutral amino acids were examined for their effectiveness, where certain antioxidants failed to protect MXenes from oxidation, while others accelerated their decomposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!