Two new alkaloids, streptopyrroles B and C ( and ), were discovered through a chemical investigation of the ethyl acetate (EtOAc) extract from a marine-derived actinomycete, , along with four known analogs (-). The structures of the new compounds were elucidated by spectroscopic analysis (HR-ESIMS, 1D, and 2D NMR) and a comparison of their experimental data with literature values. The new compounds were evaluated for their antimicrobial activity by standard broth dilution assay, and the tested compounds showed significant activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 0.7 to 2.9 µM, and kanamycin was used as a positive control with MIC values ranging from <0.5 to 4.1 µM. Additionally, , , and were evaluated for their cytotoxicity against six tumor cell lines by sulforhodamine B (SRB) assay, and these compounds displayed cytotoxic activities against all the tested cell lines, with concentration causing 50% cell growth inhibition (GI) values ranging from 4.9 to 10.8 µM, while a positive control, adriamycin, showed GI values of 0.13-0.17 µM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054583PMC
http://dx.doi.org/10.3390/md21030167DOI Listing

Publication Analysis

Top Keywords

mic values
8
values ranging
8
pyrrole-containing alkaloids
4
alkaloids marine-derived
4
marine-derived actinobacterium
4
actinobacterium antimicrobial
4
antimicrobial cytotoxic
4
cytotoxic activities
4
activities alkaloids
4
alkaloids streptopyrroles
4

Similar Publications

Three New Dipeptide and Two New Polyketide Derivatives from the Mangrove-Derived Fungus sp.: Antioxidant Activity of Two Isolated Substances.

Mar Drugs

December 2024

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Five new metabolites, including three cyclic dipeptide derivatives (-) and two new polyketides (-), together with nine known ones (- and -), were isolated from the mangrove-sediments-derived fungus sp. SCSIO 41431. Their structures were determined using detailed NMR, MS spectroscopic analyses, and quantum chemical calculations.

View Article and Find Full Text PDF

Two new cembrane-derived tricyclic diterpenes belonging to the sarcophytin family, namely 4-hydroxy-chatancin () and sarcotoroid (), together with two known related ones ( and ), were isolated from the soft coral collected off Ximao Island in the South China Sea. The structures of the new compounds were elucidated by extensive spectroscopic analysis, a quantum mechanical nuclear magnetic resonance (QM-NMR) method, a time-dependent density functional theory electronic circular dichroism (TDDFT-ECD) calculation, X-ray diffraction analysis, and comparison with the reported data in the literature. A plausible biosynthetic pathway of compounds - was proposed, involving undergoing a transannular Diels-Alder cycloaddition.

View Article and Find Full Text PDF

Indwelling intrauterine contraceptive devices (IUDs) have surfaces that facilitate the attachment of spp., creating a suitable environment for biofilm formation. Due to this, vulvovaginal candidiasis (VVC) is frequently linked to IUD usage, necessitating the prompt removal of these devices for effective treatment.

View Article and Find Full Text PDF

Optimized Extraction of Polyphenols from Kiwifruit Peels and Their Biological Activities.

BioTech (Basel)

December 2024

Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon.

(1) Background: Kiwifruit is a globally valued fruit. Its industrial processing produces a substantial amount of waste, particularly peels, which present an appealing potential source of bioactive compounds. This study focuses on optimizing the extraction of phenolics from kiwi peels using a water bath (WB) and infrared irradiation (IR) and assessing their biological activities.

View Article and Find Full Text PDF

Unlabelled: Carbapenem-resistant spp. pose a significant challenge in clinical settings due to limited treatment options for nosocomial infections. Carbapenem-hydrolyzing class D beta-lactamases are the primary cause for carbapenem resistance, while metallo-beta-lactamases (MBLs) New Delhi metallo beta-lactamase (NDM) and imipenemase (IMP) also contribute.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!