The mutable collagenous tissue (MCT) of echinoderms has the capacity to undergo changes in its tensile properties within a timescale of seconds under the control of the nervous system. All echinoderm autotomy (defensive self-detachment) mechanisms depend on the extreme destabilisation of mutable collagenous structures at the plane of separation. This review illustrates the role of MCT in autotomy by bringing together previously published and new information on the basal arm autotomy plane of the starfish L. It focuses on the MCT components of breakage zones in the dorsolateral and ambulacral regions of the body wall, and details data on their structural organisation and physiology. Information is also provided on the extrinsic stomach retractor apparatus whose involvement in autotomy has not been previously recognised. We show that the arm autotomy plane of is a tractable model system for addressing outstanding problems in MCT biology. It is amenable to in vitro pharmacological investigations using isolated preparations and provides an opportunity for the application of comparative proteomic analysis and other "-omics" methods which are aimed at the molecular profiling of different mechanical states and characterising effector cell functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058165 | PMC |
http://dx.doi.org/10.3390/md21030138 | DOI Listing |
Commun Biol
November 2024
Unaffiliated, Spring, TX, USA.
Echinoderms are a diverse phylum with a rich fossil record. The five extant classes of echinoderms are characterised by a pentameral (or pseudo-pentameral) symmetry, a water vascular system, a mesodermal skeleton of calcite stereom, and Mutable Collagenous Tissue (MCT), a unique type of connective tissue. Difficulties in tracing the geologic history of these traits complicates phylogenetic analyses of echinoderms.
View Article and Find Full Text PDFBMC Genomics
October 2024
Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA.
Collagenous connective tissue, found throughout the bodies of metazoans, plays a crucial role in maintaining structural integrity. This versatile tissue has the potential for numerous biomedical applications, including the development of innovative collagen-based biomaterials. Inspiration for such advancements can be drawn from echinoderms, a group of marine invertebrates that includes sea stars, sea cucumbers, brittle stars, sea urchins, and sea lilies.
View Article and Find Full Text PDFSci Rep
September 2024
Biomimetics-Innovation-Centre, Hochschule Bremen - City University of Applied Sciences, Bremen, Germany.
Inspired by the starfish's unique ability to achieve flexibility and posture-holding with minimal energy expenditure, we present a novel bioinspired morphing structure. Our two-component design, consisting of a thermoplastic mesh and elastomeric jacket, effectively mimics the functions of the starfish's ossicles, mutable collagenous tissues, and derma. This structure exhibits a remarkable combination of self-healing, time-dependent shape memory, and self-posture-holding properties.
View Article and Find Full Text PDFBiology (Basel)
May 2024
School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
Basement membranes (BMs) are thin layers of extracellular matrix that separate epithelia, endothelia, muscle cells, and nerve cells from adjacent interstitial connective tissue. BMs are ubiquitous in almost all multicellular animals, and their composition is highly conserved across the Metazoa. There is increasing interest in the mechanical functioning of BMs, including the involvement of altered BM stiffness in development and pathology, particularly cancer metastasis, which can be facilitated by BM destabilization.
View Article and Find Full Text PDFMar Drugs
January 2024
School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
Echinoderms (starfish, sea-urchins and their close relations) possess a unique type of collagenous tissue that is innervated by the motor nervous system and whose mechanical properties, such as tensile strength and elastic stiffness, can be altered in a time frame of seconds. Intensive research on echinoderm 'mutable collagenous tissue' (MCT) began over 50 years ago, and over 20 years ago, MCT first inspired a biomimetic design. MCT, and sea-cucumber dermis in particular, is now a major source of ideas for the development of new mechanically adaptable materials and devices with applications in diverse areas including biomedical science, chemical engineering and robotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!