The olfactory system in insects are crucial for recognition of host plants and oviposition sites. General odorant binding proteins (GOBPs) are thought to be involved in detecting odorants released by host plants. (Lepidoptera: Pyralidae) is one of the most serious pests of camphor trees, (L.) Presl, an important urban tree species in southern China. In this study, we study the GOBPs of . Firstly, two full-length GOBP genes ( and ) were successfully cloned according to transcriptome sequencing results, and real-time quantitative PCR measurements showed that both GOBP genes were specifically expressed in the antennae of both sexes, proposing their important roles in olfaction. Then, both GOBP genes were heterologous expressed in and fluorescence competitive binding assays were conducted. The results showed that OachGOBP1 could bind Farnesol ( = 9.49 μM) and 11-16: OH ( = 1.57 μM). OachGOBP2 has a high binding affinity with two camphor plant volatiles (Farnesol, = 7.33 μM; α-Phellandrene, = 8.71 μM) and two sex pheromone components (Z11-16: OAc, = 2.84 μM; Z11-16: OH, = 3.30 μM). These results indicate that OachGOBP1 and OachGOBP2 differ in terms of odorants and other ligands. Furthermore, key amino acid residues that bind to plant volatiles were identified in GOBPs using 3-D structure modeling and ligand molecular docking, predicting the interactions between the GOBPs and the host plant volatiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051560 | PMC |
http://dx.doi.org/10.3390/insects14030216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!