Nitrogen gas (N) fixation in the anode-respiring bacterium Geobacter sulfurreducens occurs through complex, multistep processes. Optimizing ammonium (NH) production from this bacterium in microbial electrochemical technologies (METs) requires an understanding of how those processes are regulated in response to electrical driving forces. In this study, we quantified gene expression levels (via RNA sequencing) of G. sulfurreducens growing on anodes fixed at two different potentials (-0.15 V and +0.15 V versus standard hydrogen electrode). The anode potential had a significant impact on the expression levels of N fixation genes. At -0.15 V, the expression of nitrogenase genes, such as , , and , significantly increased relative to that at +0.15 V, as well as genes associated with NH uptake and transformation, such as glutamine and glutamate synthetases. Metabolite analysis confirmed that both of these organic compounds were present in significantly higher intracellular concentrations at -0.15 V. N fixation rates (estimated using the acetylene reduction assay and normalized to total protein) were significantly larger at -0.15 V. Genes expressing flavin-based electron bifurcation complexes, such as electron-transferring flavoproteins (EtfAB) and the NADH-dependent ferredoxin:NADP reductase (NfnAB), were also significantly upregulated at -0.15 V, suggesting that these mechanisms may be involved in N fixation at that potential. Our results show that in energy-constrained situations (i.e., low anode potential), the cells increase per-cell respiration and N fixation rates. We hypothesize that at -0.15 V, they increase N fixation activity to help maintain redox homeostasis, and they leverage electron bifurcation as a strategy to optimize energy generation and use. Biological nitrogen fixation coupled with ammonium recovery provides a sustainable alternative to the carbon-, water-, and energy-intensive Haber-Bosch process. Aerobic biological nitrogen fixation technologies are hindered by oxygen gas inhibition of the nitrogenase enzyme. Electrically driving biological nitrogen fixation in anaerobic microbial electrochemical technologies overcomes this challenge. Using Geobacter sulfurreducens as a model exoelectrogenic diazotroph, we show that the anode potential in microbial electrochemical technologies has a significant impact on nitrogen gas fixation rates, ammonium assimilation pathways, and expression of genes associated with nitrogen gas fixation. These findings have important implications for understanding regulatory pathways of nitrogen gas fixation and will help identify target genes and operational strategies to enhance ammonium production in microbial electrochemical technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132095PMC
http://dx.doi.org/10.1128/aem.02073-22DOI Listing

Publication Analysis

Top Keywords

microbial electrochemical
20
nitrogen fixation
16
anode potential
16
nitrogen gas
16
gas fixation
16
electrochemical technologies
16
geobacter sulfurreducens
12
fixation
12
fixation rates
12
biological nitrogen
12

Similar Publications

An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

Sci Total Environ

January 2025

Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.

The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.

View Article and Find Full Text PDF

Accelerating electron transfer reduces CH and CO emissions in paddy soil.

J Environ Manage

January 2025

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF

Bioelectronic and photogenerated electron synergistic catalyzed removal of chlorhexidine: Degradation and mechanism.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087,  China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.

View Article and Find Full Text PDF

Titanium potassium oxalate had been mixed into the electrolyte to improve the anti-corrosion property of the micro arc oxidation coating on the surface of the aluminium alloy. The surface and cross-section of the coating at different titanium potassium oxalate concentrations had been observed by scanning electron microscopy, showing that when the titanium potassium oxalate concentration was 10 g/L, the coating compactness was better. Additionally, the element content of the coating had been studied by the energy dispersive spectrometer, and results proved that the coating consisted of Al, O, Ti, Si, and P.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!