Non-radioactive imaging strategies for immune cell tracking.

Phys Sci Rev

Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.

Published: March 2023

tracking of administered cells chosen for specific disease treatment may be conducted by diagnostic imaging techniques preceded by cell labeling with special contrast agents. The most commonly used agents are those with radioactive properties, however their use in research is often impossible. This review paper focuses on the essential aspect of cell tracking with the exclusion of radioisotope tracers, therefore we compare application of different types of non-radioactive contrast agents (cell tracers), methods of cell labeling and application of various techniques for cell tracking, which are commonly used in preclinical or clinical studies. We discuss diagnostic imaging methods belonging to three groups: (1) Contrast-enhanced X-ray imaging, (2) Magnetic resonance imaging, and (3) Optical imaging. In addition, we present some interesting data from our own research on tracking immune cell with the use of discussed methods. Finally, we introduce an algorithm which may be useful for researchers planning leukocyte targeting studies, which may help to choose the appropriate cell type, contrast agent and diagnostic technique for particular disease study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037928PMC
http://dx.doi.org/10.1515/psr-2020-0205DOI Listing

Publication Analysis

Top Keywords

cell tracking
12
cell
8
immune cell
8
diagnostic imaging
8
cell labeling
8
contrast agents
8
tracking
5
imaging
5
non-radioactive imaging
4
imaging strategies
4

Similar Publications

Twisted Cucurbit[14]uril-Based Supramolecular Self-Assembly Induces Fluorescence Emission of Dye Molecules for Multi-Channel Cell Imaging.

Chemistry

December 2024

Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, 400042, China.

In this study, a supramolecular fluorescent material was constructed by using double-cavity twisted cucurbit[14]uril (tQ[14]) and positively charged Astrazon Pink FG (APFG) based on the non-covalent host-guest interaction for the first time. The thermodynamic parameters of the APFG@tQ[14] in aqueous solution were determined by isothermal titration calorimetry (ITC), the results indicated that the spontaneous assembly of APFG@tQ[14] is mainly driven by enthalpy. The intramolecular charge transfer (ICT) effect induced the APFG@tQ[14] probe to emit a strong orange-red fluorescence.

View Article and Find Full Text PDF

Solu: a cloud platform for real-time genomic pathogen surveillance.

BMC Bioinformatics

January 2025

Solu Healthcare Oy, Kalevankatu 31 A 13, 00100, Helsinki, Finland.

Background: Genomic surveillance is extensively used for tracking public health outbreaks and healthcare-associated pathogens. Despite advancements in bioinformatics pipelines, there are still significant challenges in terms of infrastructure, expertise, and security when it comes to continuous surveillance. The existing pipelines often require the user to set up and manage their own infrastructure and are not designed for continuous surveillance that demands integration of new and regularly generated sequencing data with previous analyses.

View Article and Find Full Text PDF

Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues.

Tissue Eng Regen Med

January 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.

Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.

Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.

View Article and Find Full Text PDF

Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide.

Biophys Physicobiol

September 2024

Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.

Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques.

View Article and Find Full Text PDF

Background: In persistent atrial fibrillation (AF), localized extra-pulmonary vein sources may contribute to arrhythmia recurrences after pulmonary vein isolation. This in-silico study proposes a high-density sequential mapping strategy to localize such sources.

Method: Catheter repositioning was guided by repetitive conduction patterns, moving against the prevailing conduction direction (upstream) toward the sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!