Paeonol (PAE) is a hydrophobic drug. In this study, we encapsulated paeonol in a lipid bilayer of liposomes (PAE-L), which delayed drug release and increased drug solubility. When PAE-L was dispersed in gels (PAE-L-G) based on a poloxamer matrix material for local transdermal delivery, we observed amphiphilicity, reversible thermal responsiveness, and micellar self-assembly behavior. These gels can be used for atopic dermatitis (AD), an inflammatory skin disease, to change the surface temperature of the skin. In this study, we prepared PAE-L-G at an appropriate temperature for the treatment of AD. We then assessed the gel's relevant physicochemical properties, in vitro cumulative drug release, and antioxidant properties. We found that PAE-loaded liposomes could be designed to increase the drug effect of thermoreversible gels. At 32 °C, PAE-L-G could change from solution state to gelatinous state at 31.70 ± 0.42 s, while the viscosity was 136.98 ± 0.78 MPa.S and the free radical scavenging rates on DPPH and HO were 92.24 ± 5.57% and 92.12 ± 2.71%, respectively. Drug release across the extracorporeal dialysis membrane reached 41.76 ± 3.78%. In AD-like mice, PAE-L-G could also relieve skin damage by the 12th day. In summary, PAE-L-G could play an antioxidant role and relieve inflammation caused by oxidative stress in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047988PMC
http://dx.doi.org/10.3390/gels9030198DOI Listing

Publication Analysis

Top Keywords

drug release
12
thermoreversible gels
8
gels atopic
8
atopic dermatitis
8
drug
6
pae-l-g
5
design evaluation
4
evaluation paeonol-loaded
4
paeonol-loaded liposomes
4
liposomes thermoreversible
4

Similar Publications

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:

A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.

View Article and Find Full Text PDF

Ultrasound-assisted efficient targeting of doxorubicin to the tumor microenvironment by lyso-thermosensitive liposomes of varying phase transition temperatures.

Eur J Pharm Sci

January 2025

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!