Mechanical Behavior of Bamboo-Like Structures under Transversal Compressive Loading.

Biomimetics (Basel)

Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.

Published: March 2023

Inspired by many biological structures in nature, biomimetic structures demonstrate significantly better mechanical performance than traditional engineering structures. The exceptional mechanical properties of natural materials are attributed to the hierarchical architecture of their structure. Consequently, the implementation of biomimetic structures in the design of lightweight structures with tailored mechanical properties has been constantly increasing in many fields of science and engineering. The bamboo structure is of particular interest because it combines a light weight and excellent mechanical properties, often surpassing those of several engineering materials. The objective of this study was to evaluate the mechanical behavior of bamboo-inspired structures subjected to transversal compressive loading. Structures consisting of bamboo-like thin-walled hexagonal building blocks (unit cells) with different dimensions were fabricated by stereolithography 3D printing and their mechanical performance was evaluated by mechanical testing, high-speed camera video recordings, and finite element simulations. The results of the elastic modulus, yield strength, and strain energy density at fracture were interpreted in terms of characteristic dimensions of the unit cell structure. The failure process was elucidated in the light of images of the fractured structures and simulation strain maps. The results of this study demonstrate that ultralight bamboo-like structures with specific mechanical characteristics can be produced by optimizing the dimensions and number density of the hexagonal unit cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046010PMC
http://dx.doi.org/10.3390/biomimetics8010103DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
structures
10
mechanical
9
mechanical behavior
8
bamboo-like structures
8
transversal compressive
8
compressive loading
8
biomimetic structures
8
mechanical performance
8
unit cell
8

Similar Publications

High-Density Polyethylene Janus Fibrous Membrane with Enhanced Breathability and Moisture Permeability via PDA Assisted Hydrophilic Modification.

Macromol Rapid Commun

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.

View Article and Find Full Text PDF

Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.

Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).

View Article and Find Full Text PDF

Vertical Quantum Confinement in Bulk MoS.

ACS Nano

January 2025

Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.

We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.

View Article and Find Full Text PDF

Focus on mechano-immunology: new direction in cancer treatment.

Int J Surg

January 2025

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals can be translated into biochemical signals through mechano-transduction pathways.

View Article and Find Full Text PDF

Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.

Natl Sci Rev

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!