Background: AKI is a heterogeneous syndrome. Current subphenotyping approaches have only used limited laboratory data to understand a much more complex condition.
Methods: We focused on patients with AKI from the Assessment, Serial Evaluation, and Subsequent Sequelae in AKI (ASSESS-AKI). We used hierarchical clustering with Ward linkage on biomarkers of inflammation, injury, and repair/health. We then evaluated clinical differences between subphenotypes and examined their associations with cardiorenal events and death using Cox proportional hazard models.
Results: We included 748 patients with AKI: 543 (73%) of them had AKI stage 1, 112 (15%) had AKI stage 2, and 93 (12%) had AKI stage 3. The mean age (±SD) was 64 (13) years; 508 (68%) were men; and the median follow-up was 4.7 (Q1: 2.9, Q3: 5.7) years. Patients with AKI subphenotype 1 ( N =181) had the highest kidney injury molecule (KIM-1) and troponin T levels. Subphenotype 2 ( N =250) had the highest levels of uromodulin. AKI subphenotype 3 ( N =159) comprised patients with markedly high pro-brain natriuretic peptide and plasma tumor necrosis factor receptor-1 and -2 and low concentrations of KIM-1 and neutrophil gelatinase-associated lipocalin. Finally, patients with subphenotype 4 ( N =158) predominantly had sepsis-AKI and the highest levels of vascular/kidney inflammation (YKL-40, MCP-1) and injury (neutrophil gelatinase-associated lipocalin, KIM-1). AKI subphenotypes 3 and 4 were independently associated with a higher risk of death compared with subphenotype 2 and had adjusted hazard ratios of 2.9 (95% confidence interval, 1.8 to 4.6) and 1.6 (95% confidence interval, 1.01 to 2.6, P = 0.04), respectively. Subphenotype 3 was also independently associated with a three-fold risk of CKD and cardiovascular events.
Conclusions: We discovered four AKI subphenotypes with differing clinical features and biomarker profiles that are associated with longitudinal clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278836 | PMC |
http://dx.doi.org/10.2215/CJN.0000000000000156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!