Background: Currently, the incidence and prevalence of serious fungal infections is increasing, especially in immunosuppressed individuals. The co-administration of antibiotic and immunosuppressive therapies has driven the emergence of new multidrug-resistant fungal pathogens. Their significant increase and their ability to form biofilms is associated with rising morbidity and mortality. Research into novel synthetically prepared immunomodulators as potential immune response modifiers and prospective participants in drug delivery systems is of interest. Microbial polysaccharides with zwitterionic charge motifs were shown to be promising candidates.
Methods: Native and ultrasonically treated mannan from the yeast Candida albicans were chemically modified to contain both positive and negative charges in a nearly equimolar ratio mimicking the zwitterionic polysaccharides. RAW 264.7 macrophages and Balb/c mice were subjected as and models. Macrophage exposure to the set of amphoteric derivatives of mannan induced a release of Th1, Th2, Th17, and Treg cytokine signature patterns. The functionality of the exposed macrophages was assayed by cell proliferation and phagocytosis.
Results: The Th1 and Th17 dominance was over Th2. The phagocytosis and respiratory burst, together with the viability based on cell proliferation supported the bioavailability of formulas. Mouse immunization induced humoral immune responses with high titers of the IgM isotype with the IgM/IgG shift.
Conclusion: Our study demonstrated the immunobiological activities of amphoteric derivatives of mannan from . Amphoteric derivatives can be considered as bioavailable formulas with an effective immunomodulatory potency, prospectively applied as a subunit formula in the design of a mannan-based platform for drug and vaccine delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08820139.2023.2186245 | DOI Listing |
RSC Med Chem
October 2024
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
Bacterial infections pose a threat to human and animal health, and the formation of biofilm exacerbates the microbial threat. New antimicrobial agents to address this challenge are much needed. In this study, several new amphoteric compounds derived from the natural product coumarin were designed and synthesized by mimicking the structure and function of antimicrobial peptides.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
Lignin, a biomass-derived material containing chromophores, possesses the potential to serve as a versatile organic ultraviolet (UV) light screening agent. By employing quantum chemical computation techniques, an amphoteric deep eutectic solvent (DES) based on sulfamic acid was purposefully designed and engineered to create a solvent system tailored for the nanoparticle formation and functionalization of lignin. As confirmed by experimental evidence, the size of the modified lignin nanoparticles (LNPs) varies from 168.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, China.
[n]Peri-acenes ([n]PA) have attracted great interest as promising candidates for nanoelectronics and spintronics. However, the synthesis of large [n]PA (n > 4) is extremely challenging due to their intrinsic open-shell radical character and high reactivity. Herein, we report the successful synthesis and isolation of a derivative (1) of peri-hexacene in crystalline form.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
High-spin polycyclic hydrocarbons (PHs) hold significant potential in organic spintronics and organic magnets. However, their synthesis is very challenging due to their extremely high reactivity. Herein, we report the successful synthesis and isolation of a kinetically blocked derivative (1) of dianthraceno[2,3-a : 3',2'-h]-s-indacene, which represents a rare persistent triplet diradical of a Kekulé PH.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Department of Chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore.
We report a robust strategy for tuning the electronic structure and chemical stability of π-conjugated polycyclic hydrocarbons (PHs). By fusing two cyclopentadienyl rings in the peri-tetracene bay regions, we introduce antiaromatic character into the π-system, leading to unique photophysical and electronic properties. A stable mesityl-substituted dicyclopenta-peri-tetracene derivative was synthesized through stepwise formylation/intramolecular cyclization at the bay regions of the dihydro peri-tetracene precursor, followed by oxidative dehydrogenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!