Background: The fusion of computed tomography (CT) and ultrasound (US) image can enhance lesion detection ability and improve the success rate of liver interventional radiology. The image-based fusion methods encounter the challenge of registration initialization due to the random scanning pose and limited field of view of US. Existing automatic methods those used vessel geometric information and intensity-based metric are sensitive to parameters and have low success rate. The learning-based methods require a large number of registered datasets for training.
Purpose: The aim of this study is to provide a fully automatic and robust US-3D CT registration method without registered training data and user-specified parameters assisted by the revolutionary deep learning-based segmentation, which can further be used for preparing training samples for the study of learning-based methods.
Methods: We propose a fully automatic CT-3D US registration method by two improved registration metrics. We propose to use 3D U-Net-based multi-organ segmentation of US and CT to assist the conventional registration. The rigid transform is searched in the space of any paired vessel bifurcation planes where the best transform is decided by a segmentation overlap metric, which is more related to the segmentation precision than Dice coefficient. In nonrigid registration phase, we propose a hybrid context and edge based image similarity metric with a simple mask that can remove most noisy US voxels to guide the B-spline transform registration. We evaluate our method on 42 paired CT-3D US datasets scanned with two different US devices from two hospitals. We compared our methods with other exsiting methods with both quantitative measures of target registration error (TRE) and the Jacobian determinent with paired t-test and qualitative registration imaging results.
Results: The results show that our method achieves fully automatic rigid registration TRE of 4.895 mm, deformable registration TRE of 2.995 mm in average, which outperforms state-of-the-art automatic linear methods and nonlinear registration metrics with paired t-test's p value less than 0.05. The proposed overlap metric achieves better results than self similarity description (SSD), edge matching (EM), and block matching (BM) with p values of 1.624E-10, 4.235E-9, and 0.002, respectively. The proposed hybrid edge and context-based metric outperforms context-only, edge-only, and intensity statistics-only-based metrics with p values of 0.023, 3.81E-5, and 1.38E-15, respectively. The 3D US segmentation has achieved mean Dice similarity coefficient (DSC) of 0.799, 0.724, 0.788, and precision of 0.871, 0.769, 0.862 for gallbladder, vessel, and branch vessel, respectively.
Conclusions: The deep learning-based US segmentation can achieve satisfied result to assist robust conventional rigid registration. The Dice similarity coefficient-based metrics, hybrid context, and edge image similarity metric contribute to robust and accurate registration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.16396 | DOI Listing |
JMIR Aging
January 2025
Centre of Expertise in Care Innovation, Department of PXL - Healthcare, PXL University of Applied Sciences and Arts, Hasselt, Belgium.
Background: Advancements in mobile technology have paved the way for innovative interventions aimed at promoting physical activity (PA).
Objective: The main objective of this feasibility study was to assess the feasibility, usability, and acceptability of the More In Action (MIA) app, designed to promote PA among older adults. MIA offers 7 features: personalized tips, PA literacy, guided peer workouts, a community calendar, a personal activity diary, a progression monitor, and a chatbot.
JMIR Res Protoc
January 2025
McMaster University, Hamilton, ON, Canada.
Background: Research has shown that engaging in a range of healthy lifestyles or behavioral factors can help reduce the risk of developing dementia. Improved knowledge of modifiable risk factors for dementia may help engage people to reduce their risk, with beneficial impacts on individual and public health. Moreover, many guidelines emphasize the importance of providing education and web-based resources for dementia prevention.
View Article and Find Full Text PDFJMIR Ment Health
January 2025
Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States.
Background: Evidence-based digital therapeutics represent a new treatment modality in mental health, potentially providing cost-efficient, accessible means of augmenting existing treatments for chronic mental illnesses. CT-155/BI 3972080 is a prescription digital therapeutic under development as an adjunct to standard of care treatments for patients 18 years of age and older with experiential negative symptoms (ENS) of schizophrenia. Individual components of CT-155/BI 3972080 are designed based on the underlying principles of face-to-face treatment.
View Article and Find Full Text PDFJMIR Ment Health
January 2025
Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
Background: Insomnia is a prevalent sleep disorder affecting millions worldwide, with significant impacts on daily functioning and quality of life. While traditionally assessed through subjective measures such as the Insomnia Severity Index (ISI), the advent of wearable technology has enabled continuous, objective sleep monitoring in natural environments. However, the relationship between subjective insomnia severity and objective sleep parameters remains unclear.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia.
Background: Postpartum depression remains a significant concern, posing substantial challenges to maternal well-being, infant health, and the mother-infant bond, particularly in the face of barriers to traditional support and interventions. Previous studies have shown that mobile health (mHealth) interventions offer an accessible means to facilitate early detection and management of mental health issues while at the same time promoting preventive care.
Objective: This study aims to evaluate the effectiveness of the Leveraging on Virtual Engagement for Maternal Understanding & Mood-enhancement (LoVE4MUM) mobile app, which was developed based on the principles of cognitive behavioral therapy and psychoeducation and serves as an intervention to prevent postpartum depression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!