A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Green extract rosemary acid as a viscosity-sensitive molecular sensor in liquid systems. | LitMetric

Green extract rosemary acid as a viscosity-sensitive molecular sensor in liquid systems.

Anal Methods

Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.

Published: April 2023

The liquid micro-environment plays a momentous role in the regulation of various activities, and the abnormal changes are often closely related to the deterioration phenomena in multiple beverages. The local viscosity fluctuation has long been regarded as a key indicator to reflect the micro-environmental status changes. Herein, we proposed a versatile optical sensor, rosmarinic acid (RA), one kind of green natural product extracted from rosemary, for monitoring liquid micro-environmental viscosity alterations. RA displays a larger Stokes shift (123.8 nm) with narrow-band energy and exhibits wide adaptability, high selectivity, good sensitivity, and excellent photostability in various commercial liquids. When in high viscous media, a bright fluorescent signal of RA is specifically activated, and a high signal-to-noise ratio signal was released (58-fold). With the assistance of the fluorescence analytical technique, we have successfully achieved tracking the viscosity fluctuations during the deterioration stage of liquids an and visualization method. Our study will spur additional research on the molecular tools extracted from natural products for liquid safety inspection, and a convenient and sustainable application pathway has been established.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay00112aDOI Listing

Publication Analysis

Top Keywords

green extract
4
extract rosemary
4
rosemary acid
4
acid viscosity-sensitive
4
viscosity-sensitive molecular
4
molecular sensor
4
liquid
4
sensor liquid
4
liquid systems
4
systems liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!