In this paper, we design a solar absorber based on the SiN-W-Ti-SiO insulator-metal-insulator structure and demonstrate it using the finite difference time domain (FDTD) method. The absorption rate of the absorber consisting of a multi-layer structure with cross etching is over 90% in the bandwidth of 500 nm to 2995 nm with an average absorption rate of 98.3%. There are three peaks at 620 nm, 1002 nm and 1761 nm with peak heights of 99.8%, 99.8% and 99.0%, respectively. By analyzing the distribution of electric and magnetic fields in different sections of the absorber, it is found that the physical mechanism of the structure with high absorptivity is due to the interaction of propagating surface plasmon resonance and local surface plasma resonance. The effects of different structural parameters and the angle of incidence of a light source on the absorber absorption are discussed. The absorber can be used in solar thermal systems, thermal photovoltaics and thermoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp05901kDOI Listing

Publication Analysis

Top Keywords

multi-layer structure
8
structure cross
8
cross etching
8
absorption rate
8
absorber
5
metamaterial ultra-wideband
4
ultra-wideband solar
4
solar absorbers
4
absorbers based
4
based multi-layer
4

Similar Publications

Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.

Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.

View Article and Find Full Text PDF

Draw+: network-based computational drug repositioning with attention walking and noise filtering.

Health Inf Sci Syst

December 2025

Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea.

Purpose: Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions.

View Article and Find Full Text PDF

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Flexible pressure sensors have shown significant application prospects in fields such as artificial intelligence and precision manufacturing. However, most flexible pressure sensors are often prepared using polymer materials and precise micronano processing techniques, which greatly limits the widespread application of sensors. Here, this work chooses textile material as the construction material for the sensor, and its latitude and longitude structure endows the sensor with a natural structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!