Visceral leishmaniasis (VL) is an infectious disease caused by parasite in Indian subcontinent and is life-threatening. It primarily inflicts the malnourished population. There is little therapeutic advancement in the last one decade or more, as the available drugs show adverse effects, complex long treatment, high cost and drug resistance. Here, in a concerted approach, we intended to address the malnutrition as well as the parasite load with a single modality. Our earlier findings show the protective effects of retinoic acid (RA) in controlling the parasite load in infected macrophages (mφ) and restores their M1 phenotype. RA also restores the levels of cellular cholesterol in infected mφ. In this process, we observed loss of ergosterol in the parasite upon treatment with RA. Hence, we hypothesized that RA, besides boosting the parasiticidal mechanism in mφ, may also target the sterol pathway in the parasite by targeting sterol 24-C methyltransferase (SMT). SMT plays an essential role in the formation of ergosterol, required for growth and viability in species. Therefore, we predicted as well as validated the 3D structure of SMT protein and performed the quality check. RA showed -9.9 free binding energy towards SMT which is higher than any of its derivatives. The molecular dynamics showed stable conjugate and the testing showed a reduction by ∼ twofold in the parasite number upon RA treatment. Importantly, it showed a loss of ergosterol possibly due to the inhibition of SMT protein. Our finding showed direct parasiticidal function of RA which is of significance in terms of therapeutic advancement.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2193983DOI Listing

Publication Analysis

Top Keywords

retinoic acid
8
direct parasiticidal
8
therapeutic advancement
8
parasite load
8
loss ergosterol
8
smt protein
8
parasite
6
smt
5
acid direct
4
parasiticidal activity
4

Similar Publications

Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.

View Article and Find Full Text PDF

Analysis of nuclear receptor expression in head and neck cancer.

Cancer Genet

December 2024

Department of Otolaryngology, University of Minnesota, MMC396, 420 Delaware St SE, Minneapolis, MN 55455, USA.

Objective: Studies of squamous cell carcinoma of the head and neck (HNSCC) have demonstrated the importance of nuclear receptors and their associated coregulators in the development and treatment of HNSCC. We sought to characterize members of the nuclear receptor super family through interrogation of RNA-Seq and microarray data.

Materials And Methods: TCGA RNA-Seq data within the cBioportal platform comparing HNSCC samples (n = 515 patients with RNA-Seq data) to normal tissue (n = 82 patients) was interrogated for significant differences in nuclear receptor expression.

View Article and Find Full Text PDF

Point mutations in the ligand binding domain of retinoic acid receptor alpha (RARα) are linked to breast fibroepithelial tumor development, but their role in solid tumorigenesis is unclear. In this study, we assessed the functional effects of known RARα mutations on retinoic acid signaling using biochemical and cellular assays. All tested mutants exhibited reduced transcriptional activity compared to wild-type RARα and showed a dominant negative effect, a feature associated with developmental defects and tumor formation.

View Article and Find Full Text PDF

Nowadays, the use of monoclonal antibodies to target angiogenic signalling pathways is common, but, unfortunately, the clinical activity of these agents is limited. Thus, the development of approaches targeting multiple pathways for anti-angiogenic effect will lead to increase the clinical benefit. For this purpose, oleuropein, hesperidin, piperine, proanthocyanidins and retinoic acid, which have previously been proven to be bioactive components, anti-angiogenic performances were experimentally tested in retinal pigment epithelial cells.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!