This work elaborates on the decoration of metal oxides (ZnO and FeO) between MXene sheets for use as the supporting geometry of PCBM electron transport layers (ETLs) in perovskite solar cells and X-ray detectors. The metal oxide supports for carrying the plentiful charge carriers and the hydrophobic nature of MXenes provide an easy charge transfer path through their flakes and a smooth surface for the ETL. The developed interface engineering based on the MXene/ZnO and MXene/FeO hybrid ETL results in improved power conversion efficiencies (PCEs) of 13.31% and 13.79%, respectively. The observed PCE is improved to 25.80% and 30.34% by blending the MXene/ZnO and MXene/FeO nanoparticles with the PCBM layer, respectively. Various factors, such as surface modification, swift interfacial interaction, roughness decrement, and charge transport improvement, are strongly influenced to improve the device performance. Moreover, X-ray detectors with the MXene/FeO-modulated PCBM ETL achieve a CCD-DCD, sensitivity, mobility, and trap density of 15.46 μA cm, 4.63 mA per Gy per cm, 5.21 × 10 cm V s, and 1.47 × 10 cm V s, respectively. Metal oxide-decorated MXene sheets incorporating the PCBM ETL are a significant route for improving the photoactive species generation, long-term stability, and high mobility of perovskite-based devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr01196hDOI Listing

Publication Analysis

Top Keywords

x-ray detectors
12
electron transport
8
transport layers
8
perovskite solar
8
solar cells
8
cells x-ray
8
mxene sheets
8
mxene/zno mxene/feo
8
pcbm etl
8
tuning electron
4

Similar Publications

Background: Photon-counting detector (PCD) technology has the potential to reduce noise in computed tomography (CT). This study aimed to carry out a voxelwise noise characterization for a clinical PCD-CT scanner with a model-based iterative reconstruction algorithm (QIR).

Methods: Forty repeated axial acquisitions (tube voltage 120 kV, tube load 200 mAs, slice thickness 0.

View Article and Find Full Text PDF

Diagnostic value of dual-layer spectral detector CT parameters for differentiating high- from low-grade bladder cancer.

Insights Imaging

January 2025

Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.

Objectives: This study aimed to investigate the diagnostic value of spectral parameters of dual-layer spectral detector computed tomography (DLCT) in distinguishing between low- and high-grade bladder cancer (BCa).

Methods: This single-center retrospective study included pathologically confirmed BCa patients who underwent preoperative contrast-enhanced DLCT. Patients were divided into low- and high-grade groups based on pathology.

View Article and Find Full Text PDF

Historically, evaluation of the upper extremity vasculature was performed using digital subtraction angiography. With the advancement of cross-sectional imaging and submillimeter isotropic data acquisition, CT angiography (CTA) has become an excellent noninvasive diagnostic tool for evaluation of the vasculature of the upper extremities. CTA allows quick evaluation of vessel patency and irregularity and achievement of the anatomic detail needed in preoperative planning.

View Article and Find Full Text PDF

Introduction: This study aimed to evaluate the imaging findings of the chest flat panel detector computed tomography (FDCT) among coronavirus disease-2019 (COVID-19) positive patients during urgent/emergent interventional neuroradiologic procedures.

Materials And Methods: Chest FDCT examinations were performed using a C-arm mounted FDCT within the interventional radiology (IR) suite if the reverse transcription polymerase chain reaction (RT-PCR) results were pending in patients with clinical findings suggestive of COVID-19. In those who already had positive RT-PCR results, FDCT was performed for acute evaluation only if an acute unexpected cardiopulmonary event occurred during the procedure.

View Article and Find Full Text PDF

Growth window optimization for large-size quasi-two-dimensional Dion-Jacobson type perovskites.

Chem Commun (Camb)

January 2025

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

Quasi-2D DJ type perovskites theoretically offer excellent properties for X-ray detection, but they often face issues such as phase segregation and small crystal size. In this study, we synthesized large single crystals of quasi-2D DJ type perovskite (3AMPY)(MA)PbBr using temperature-controlled crystallization. The resulting X-ray detector exhibited high resistivity (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!