The difference spectra of lactate and malate dehydrogenase complexes with four native dyes containing vinylsulfonic and triazinic groups (light-resistant yellow 2KT, red-violet 2KT, etc.) were monitored in 0.1 M phosphate buffer pH 8.2 at 20 degrees C. The dissociation constants were calculated from the spectral data. The most stable complexes were lactate dehydrogenase--light-resistant yellow 2KT and malate dehydrogenase--light-resistant yellow 2KT ones. The values of delta H degree = 5.75 kcal/mole and standard thermodynamic parameters, delta G degree = -6.5 kcal/mole and delta S degree = 41.2 e. u., were calculated from the values of association constants for temperature dependence. The thermodynamic characteristics confirmed the key role of hydrophobic interactions in lactate dehydrogenase--reactive dye complex formation. All the dyes under study competitively inhibit lactate and malate oxidation by the corresponding dehydrogenases. The inhibition constants of both enzymes by the four dyes were determined at 20 degrees C in 0.1 M phosphate buffer pH 8.2. Light-resistant yellow 2KT appeared to be the most effective inhibitor of the enzymes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

yellow 2kt
16
lactate malate
12
delta degree
12
malate dehydrogenase
8
light-resistant yellow
8
phosphate buffer
8
dehydrogenase--light-resistant yellow
8
2kt
5
[inhibition lactate
4
malate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!