Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, foliar applications of nanoparticles are increasingly being employed in agricultural fields as fertilizers to enhance crop yields. However, limited studies are available on the foliar uptake of nanoscale nutrients and their interaction with plants. In this study, we reported the effects of foliar spray with varied concentrations of nanoscale silica (N-SiO) and bulk tetraethyl orthosilicate (TEOS at 2000 ppm) on the growth and yield of groundnut. Nanosilica was prepared by a sol-gel method and characterized by transmission electron microscopy, dynamic light scattering, and X-ray diffraction. The size and zeta potential of N-SiO were found to be 28.7 nm and 32 mV, respectively. The plant height, number of branches, total dry weight, SPAD chlorophyll meter reading, photosynthetic rate, water use efficiency, number of nodules, and ascorbic acid content were increased significantly with the N-SiO foliar application at 400 ppm over control. The number of filled pods increased significantly by 38.78 and 58.60% with N-SiO at 400 ppm application over TEOS and control, respectively. The pod yield per plant in N-SiO at 400 ppm increased by 25.52 and 31.7% higher over TEOS and control, respectively. Antioxidant enzyme activities enhanced significantly in N-SiO at 200 and 400 ppm over control, indicating a stimulatory effect on the plant growth. In addition, confocal microscopy revealed that fluorescein isothiocyanate (FITC)-N-SiO entered through stomata and then transported to vascular bundles via apoplastic movement. Our study for the first time demonstrated that N-SiO can significantly modulate multiple complex traits in groundnut through an eco-friendly and sustainable approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c00327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!