Age is the main risk factor for the development of neurodegenerative diseases. In the aged brain, axonal degeneration is an early pathological event, preceding neuronal dysfunction, and cognitive disabilities in humans, primates, rodents, and invertebrates. Necroptosis mediates degeneration of injured axons, but whether necroptosis triggers neurodegeneration and cognitive impairment along aging is unknown. Here, we show that the loss of the necroptotic effector Mlkl was sufficient to delay age-associated axonal degeneration and neuroinflammation, protecting against decreased synaptic transmission and memory decline in aged mice. Moreover, short-term pharmacologic inhibition of necroptosis targeting RIPK3 in aged mice, reverted structural and functional hippocampal impairment, both at the electrophysiological and behavioral level. Finally, a quantitative proteomic analysis revealed that necroptosis inhibition leads to an overall improvement of the aged hippocampal proteome, including a subclass of molecular biofunctions associated with brain rejuvenation, such as long-term potentiation and synaptic plasticity. Our results demonstrate that necroptosis contributes to age-dependent brain degeneration, disturbing hippocampal neuronal connectivity, and cognitive function. Therefore, necroptosis inhibition constitutes a potential geroprotective strategy to treat age-related disabilities associated with memory impairment and cognitive decline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186608 | PMC |
http://dx.doi.org/10.1111/acel.13814 | DOI Listing |
Respir Investig
January 2025
Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, China. Electronic address:
Background: The mechanism underlying necroptosis in pulmonary vessel endothelial cells (PVECs) resulting from long non-coding RNA (lncRNA)-induced alternative splicing (AS) of target genes in acute lung injury (ALI) remains unclear.
Methods: Lipopolysaccharide (LPS)-induced expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and lncRNAs was analyzed via RT-PCR in PVECs. Full-transcriptome sequencing was used to detect AS-related mRNAs.
BMC Cancer
January 2025
Department of Cellular and Molecular Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Background/aims: Gastric cancer (GC) is a significant global health issue with high incidence rates and poor prognoses, ranking among the top prevalent cancers worldwide. Due to undesirable side effects and drug resistance, there is a pressing need for the development of novel therapeutic strategies. Understanding the interconnectedness of the JAK2/STAT3/mTOR/PI3K pathway in tumorigenesis and the role of Astaxanthin (ASX), a red ketocarotenoid member of xanthophylls and potent antioxidant and anti-tumor activity, can be effective for cancer treatments.
View Article and Find Full Text PDFBiomaterials
January 2025
Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China. Electronic address:
Acute myeloid leukemia (AML) presents significant treatment challenges due to the severe toxicities and limited efficacy of conventional therapies, highlighting the urgency for innovative approaches. Organelle-targeting therapies offer a promising avenue to enhance therapeutic outcomes while minimizing adverse effects. Herein, inspired that primary AML cells are enriched with lysosomes and sensitive to lysosomophilic drugs (e.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI).
View Article and Find Full Text PDFCells
December 2024
Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
Functional cell death pathways are essential for normal ocular vascular development and tissue homeostasis. As our understanding of necrosis-based cell death pathways has expanded, the inclusion of regulated forms, including necroptosis, ferroptosis, and oxytosis, has occurred. Although the existence of these pathways is well described, our understanding of their role during vascular development and pathological neovascularization is very limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!