Bioadhesive patch as a parenchymal sparing treatment of acute traumatic pulmonary air leaks.

J Trauma Acute Care Surg

From the Madigan Army Medical Center (J.W., B.P., A.F., M.W., M.P., M.V., J.F., E.R., J.H., J.B., J.K.), Tacoma, Washington; and Laboratory of Adaptive and Regenerative Biology (B.L., S.M., J.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Published: November 2023

Introduction: Traumatic pulmonary injuries are common in chest trauma. Persistent air leaks occur in up to 46% of patients depending on injury severity. Prolonged leaks are associated with increased morbidity and cost. Prior work from our first-generation pectin patches successfully sealed pulmonary leaks in a cadaveric swine model. We now test the next-generation pectin patch against wedge resection in the management of air leaks in anesthetized swine.

Methods: A continuous air leak of 10% to 20% percent was created to the anterior surface of the lung in intubated and sedated swine. Animals were treated with a two-ply pectin patch or stapled wedge resection (SW). Tidal volumes (TVs) were recorded preinjury and postinjury. Following repair, TVs were recorded, a chest tube was placed, and animals were observed for presence air leak at closure and for an additional 90 minutes while on positive pressure ventilation. Mann-Whitney U test and Fisher's exact test used to compare continuous and categorical data between groups.

Results: Thirty-one animals underwent either SW (15) or pectin patch repair (PPR, 16). Baseline characteristics were similar between animals excepting baseline TV (SW, 10.3 mL/kg vs. PPR, 10.9 mL/kg; p = 0.03). There was no difference between groups for severity of injury based on percent of TV loss (SW, 15% vs. PPR, 14%; p = 0.5). There was no difference in TV between groups following repair (SW, 10.2 mL/kg vs. PPR, 10.2 mL/kg; p = 1) or at the end of observation (SW, 9.8 mL/kg vs. PPR, 10.2 mL/kg; p = 0.4). One-chamber intermittent air leaks were observed in three of the PPR animals, versus one in the SW group ( p = 0.6).

Conclusion: Pectin patches effectively sealed the lung following injury and were noninferior when compared with wedge resection for the management of acute traumatic air leaks. Pectin patches may offer a parenchymal sparing option for managing such injuries, although studies evaluating biodurability are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TA.0000000000003956DOI Listing

Publication Analysis

Top Keywords

air leaks
20
pectin patches
12
pectin patch
12
wedge resection
12
ml/kg ppr
12
102 ml/kg
12
parenchymal sparing
8
acute traumatic
8
traumatic pulmonary
8
resection management
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!