Background: We aimed to build a novel model with golgi apparatus related genes (GaGs) signature and relevant clinical parameters for predicting progression-free interval (PFI) after surgery for papillary thyroid carcinoma (PTC).

Methods: We performed a bioinformatic analysis of integrated PTC datasets with the GaGs to identify differentially expressed GaGs (DE-GaGs). Then we generated PFI-related DE-GaGs and established a novel GaGs based signature. After that, we validated the signature on multiple external datasets and PTC cell lines. Further, we conducted uni- and multivariate analyses to identify independent prognostic characters. Finally, we established a signature and clinical parameters-based nomogram for predicting the PFI of PTC.

Results: We identified 260 DE-GaGs related to PFI in PTC. The functional enrichment analysis showed that the DE-MTGs were associated with an essential oncogenic glycoprotein biosynthetic process. Consequently, we established and optimized a novel 11 gene signature that could distinguish patients with poorer prognoses and predicted PFI accurately. The novel signature had a C-index of 0.78, and the relevant nomogram had a C-index of 0.79. Also, it was closely related to the pivotal clinical characters of and anaplastic potential in datasets and PTC cell lines. And the signature was confirmed a significant independent prognostic factor in PTC. Finally, we built a nomogram by including the signature and relevant clinical factors. Validation analysis showed that the nomogram's efficacy was satisfying in predicting PTC's PFI.

Conclusion: The GaGs signature and nomogram were closely associated with PTC prognosis and may help clinicians improve the individualized prediction of PFI, especially for high-risk patients after surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041766PMC
http://dx.doi.org/10.1186/s12920-023-01485-zDOI Listing

Publication Analysis

Top Keywords

signature
10
predicting progression-free
8
progression-free interval
8
papillary thyroid
8
thyroid carcinoma
8
gags signature
8
signature relevant
8
relevant clinical
8
datasets ptc
8
ptc cell
8

Similar Publications

Prognostic value and immune landscapes of disulfidptosis‑related lncRNAs in bladder cancer.

Mol Clin Oncol

February 2025

Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.

Disulfidptosis, which was recently identified, has shown promise as a potential cancer treatment. Nonetheless, the precise role of long non-coding RNAs (lncRNAs) in this phenomenon is currently unclear. To elucidate their significance in bladder cancer (BLCA), a signature of disulfidptosis-related lncRNAs (DRlncRNAs) was developed and their potential prognostic significance was explored.

View Article and Find Full Text PDF

Guidelines in statistical modeling for genomics hold that simpler models have advantages over more complex ones. Potential advantages include cost, interpretability, and improved generalization across datasets or biological contexts. We directly tested the assumption that small gene signatures generalize better by examining the generalization of mutation status prediction models across datasets (from cell lines to human tumors and vice versa) and biological contexts (holding out entire cancer types from pan-cancer data).

View Article and Find Full Text PDF

Initial analyses showed that asteroid Ryugu's composition is close to CI (Ivuna-like) carbonaceous chondrites -the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (e.g.

View Article and Find Full Text PDF

First report of the whole‑genome sequence analysis of Fig badnavirus 2 from China.

Virus Genes

January 2025

College of Agronomy, Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Agricultural University, Urumqi, 830052, China.

A novel plant virus was identified in fig trees exhibiting ring spot symptoms through high-throughput sequencing (HTS). The complete genome sequence was successfully determined using PCR and RT-PCR techniques. The virus features a circular DNA genome of 7233 nucleotides (nt) in length, encompassing four open reading frames (ORFs).

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!