A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nano-selenium Antagonizes Heat Stress-Induced Apoptosis of Rainbow Trout (Oncorhynchus mykiss) Hepatocytes by Activating the PI3K/AKT Pathway. | LitMetric

Nano-selenium Antagonizes Heat Stress-Induced Apoptosis of Rainbow Trout (Oncorhynchus mykiss) Hepatocytes by Activating the PI3K/AKT Pathway.

Biol Trace Elem Res

College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China.

Published: December 2023

The cold-water fish rainbow trout (Oncorhynchus mykiss) shows poor resistance to heat, which is the main factor restricting their survival and yield. With the advancement of nanotechnology, nano-selenium (nano-Se) has emerged as a key nano-trace element, showing unique advantages, including high biological activity and low toxicity, for studying the response of animals to adverse environmental conditions. However, little is still known regarding the potential protective mechanisms of nano-Se against heat stress-induced cellular damage. Herein, we aimed to investigate the mechanism underlying the antagonistic effects of nano-Se on heat stress. Four groups were assessed: CG18 (0 μg/mL nano-Se, 18 °C), Se18 (5.0 μg/mL nano-Se, 18 °C), CG24 (0 μg/mL nano-Se, incubated at 18 °C for 24 h and then transferred to 24 °C culture), and Se24 (5.0 μg/mL nano-Se, incubated at 18 °C for 24 h and then transferred to 24 °C culture). We found that after heat treatment (CG24 group), T-AOC, GPx, and CAT activities in rainbow trout hepatocytes showed a decrease of 36%, 33%, and 19%, respectively, while ROS and MDA levels showed an increase of 67% and 93%, respectively (P < 0.05). Meanwhile, the mRNA levels of the apoptosis-related genes caspase3, caspase9, Cyt-c, Bax, and Bax/Bcl-2 in the CG24 group were 41%, 47%, 285%, 65%, and 151% higher than those in the CG18 group, respectively, while those of PI3K and AKT were 31% and 17% lower, respectively (P < 0.05). Besides, flow cytometry analysis showed an increase in the level of apoptotic cells after heat exposure. More importantly, we observed that nano-Se cotreatment (Se24 group) remarkably attenuated heat stress-induced effects (P < 0.05). We conclude that heat stress induces oxidative stress and apoptosis in rainbow trout hepatocytes. Nano-Se ameliorates heat stress-induced apoptosis by activating the PI3K/AKT pathway. Our results provide a new perspective to improve our understanding of the ability of nano-Se to confer heat stress resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-023-03637-9DOI Listing

Publication Analysis

Top Keywords

rainbow trout
12
heat stress-induced
8
trout oncorhynchus
8
oncorhynchus mykiss
8
nano-se heat
8
0 μg/ml nano-se
8
nano-se 18 °c
8
50 μg/ml nano-se
8
nano-se incubated
8
incubated 18 °c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!