Extraction-assisted voltammetric determination of homocysteine using magnetic nanoparticles modified with molecularly imprinted polymer.

Mikrochim Acta

Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil.

Published: March 2023

A magnetic graphite-epoxy composite (m-GEC) electrochemical sensor is presented based on magnetic imprinted polymer (mag-MIP) to determine homocysteine (Hcy). Mag-MIP was synthesized via precipitation polymerization, using functionalized magnetic nanoparticles (FeO) together with the template molecule (Hcy), the functional monomer 2-hydroxyethyl methacrylate (HEMA), and the structural monomer trimethylolpropane trimethacrylate (TRIM). For mag-NIP (magnetic non-imprinted polymer), the procedure was the same in the absence of Hcy. Morphological and structural properties of the resultant mag-MIP and mag-NIP were examined using TEM, FT-IR, and Vibrating Sample Magnetometer. Under optimized conditions, the m-GEC/mag-MIP sensor showed a linear range of 0.1-2 µmol L, with a limit of detection (LOD) of 0.030 µmol L. In addition, the proposed sensor responded selectively to Hcy compared to several interferents present in biological samples. The recovery values determined by differential pulse voltammetry (DPV) were close to 100% for natural and synthetic samples, indicating good method accuracy. The developed electrochemical sensor proves to be a suitable device for determining Hcy, with advantages related to magnetic separation and electrochemical analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-023-05738-7DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
imprinted polymer
8
electrochemical sensor
8
magnetic
5
hcy
5
extraction-assisted voltammetric
4
voltammetric determination
4
determination homocysteine
4
homocysteine magnetic
4
nanoparticles modified
4

Similar Publications

A dual-signal aptamer-based assay utilizing colorimetric and fluorescence techniques was developed for the determination of zearalenone (ZEN). The CdTe quantum dots, serving as the fluorescent signal source, were surface-modified onto FeO@SiO and subsequently functionalized with the aptamer. The COF-Au was modified with complementary chain, which possessed peroxide (POD)-like enzyme properties, and could catalyze the peroxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to ox TMB, resulting in the generation of colorimetric signals.

View Article and Find Full Text PDF

Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.

View Article and Find Full Text PDF

This manuscript describes the successful synthesis of FeO nanoparticles coated with β-cyclodextrin-intercalated layered double hydroxide, which were utilized to remove Uranium (VI) from an aqueous solution effectively. The newly developed nano-adsorbent underwent thorough analysis through advanced techniques such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and energy-dispersive X-ray analysis (EDX). Through the utilization of a one-variable-at-a-time strategy, we effectively enhanced the removal process by optimizing key factors such as the sample's pH and the amount of adsorbent utilized.

View Article and Find Full Text PDF

This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue environments and assess drug efficacy and dosage in a controlled setting. The research focused on two MNP types, uncoated magnetite nanoparticles (mMNPs) and carboxymethyl dextran coated superparamagnetic nanoparticles (CD-SPIONs), and evaluated their transport properties in microfluidic systems and porous media. The original uncoated mMNPs of bimodal size distribution and the narrow size distribution of the fractions (23 nm and 106 nm by radii) were demonstrated to agglomerate in magnetically driven microfluidic flow, forming a stable stationary web consisting of magnetic fibers within 30 min.

View Article and Find Full Text PDF

Carbapenem-Resistant Adherence to Magnetic Nanoparticles.

Nanomaterials (Basel)

December 2024

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.

Carbapenem-resistant (CRE) is an emerging global concern. Specifically, carbapenemase-producing (CP) strains in CRE have recently been found in clinical, environmental, and food samples worldwide, causing many hospitalizations and deaths. Their rapid identification and characterization are paramount in control, management options, and treatment choices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!